Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
Physical and chemical parameters at five Pacific oyster (Crassostrea gigas) growing areas in Tasmania - Pittwater, Pipeclay Lagoon, Little Swanport, Georges Bay and Simpsons Bay - were measured as part of a study to determine the carrying capacity of the areas for oyster farming. The data represented by this record, was collected in Little Swanport. This has provided valuable environmental data for these areas. The hydrodynamic regimes at each area except Simpsons Bay were studied, including high and low water volumes, flushing rates, flow rates and depth contours. Temperature, salinity and concentrations of nitrates, phosphates, silicates and chlorophyll a were measured monthly at several sites in each area. The change in these parameters over different time scales also was examined at two sites in Pittwater and indicated temporal and spatial variability in the environmental parameters measured.
-
The Aqua and Orbview satellites carry a MODIS and SeaWIFS sensors (respectively) that observes sunlight reflected from within the ocean surface layer at multiple wavelengths. These multi-spectral measurements are used to infer the concentration of chlorophyll-a (Chl-a), most typically due to phytoplankton, present in the water. There are multiple retrieval algorithms for estimating Chl-a and aggregating the data over time. This data set is a reprocessed copy of 9km monthly and 8-day versions produced globally by NASA, adjusted for the Southern Ocean south of latitude 30S. The full methodology is described in Johnson, R., Strutton, P.G., Wright, S.W., McMinn, A., Meiners, K.M., 2013. Three improved satellite chlorophyll algorithms for the Southern Ocean. Journal of Geophysical Research: Oceans. doi: 10.1002/jgrc.20270. It is expected that the data set will be periodically updated with contemporary data as it becomes available. There are four sub-streams within this data set. A monthly and an 8-day series for MODIS/Aqua and similarly for SeaWIFS. Note that SeaWIFS ceased operation in late 2010 so there will be no further SeaWIFS data. The data represented by this record is monthly data for SeaWIFS.
-
A 12-month program was developed and implemented in order to obtain baseline information on water quality (salinity, water temperature, dissolved oxygen, turbidity, pH, dissolved nutrients, silica), ecological condition as shown by Chlorophyll a, benthic macroinvertebrates, pathogens, and habitat extent determined from habitat mapping. Five key estuaries and coastal waters were assessed in the Southern NRM Region of Tasmania. The data represented by this record was collected in North West Bay.
-
This Resource is a maps of Australian Maritime Safety Authority (AMSA) Shipping waste and oil spills for current, 2013-2017 and 2018-2023.
-
This dataset compiles spatial environmental data layers from various sources used for predicting distributional patterns of Antarctic seafloor biodiversity (Jansen et al, in prep). All data layers are projected to polar stereographic (EPSG:3031) at a resolution of 2km. Data layers include seafloor depth, slope and topographic position index, distance to the nearest underwater canyon head, ocean surface net primary productivity, seafloor water current speeds, temperature and salinity, and modelled availability of ocean surface-derived food at the seafloor.
-
Between 2009-2012, Geoscience Australia conducted three surveys to Joseph Bonaparte Gulf and the Timor Sea on the R.V. Solander, in collaboration with the Australian Institute of Science and the Museum and Art Gallery of the Northern Territory. The study areas overlapped the Oceanic Shoals Commonwealth Marine Reserve and the carbonate banks and terraces within it. The surveys were conducted as part of the Australian Government's Energy Security Program (2007-2011) and the National Environment Research Program (2011-2015). On the surveys, a benthic sled was deployed to collect biological samples from the seafloor. Samples were sorted onboard according to phylum, photographed and then sent to taxonomists for species-level identifications. This dataset provides a list of all identified sponge species. The associated image catalogue of collected sponges can be accessed here: https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/1216e0f4-099c-49f6-96f7-ed3eadc0cd15
-
The Aqua and Orbview satellites carry a MODIS and SeaWIFS sensors (respectively) that observes sunlight reflected from within the ocean surface layer at multiple wavelengths. These multi-spectral measurements are used to infer the concentration of chlorophyll-a (Chl-a), most typically due to phytoplankton, present in the water. There are multiple retrieval algorithms for estimating Chl-a and aggregating the data over time. This data set is a reprocessed copy of 9km monthly and 8-day versions produced globally by NASA, adjusted for the Southern Ocean south of latitude 30S. The full methodology is described in Johnson, R., Strutton, P.G., Wright, S.W., McMinn, A., Meiners, K.M., 2013. Three improved satellite chlorophyll algorithms for the Southern Ocean. Journal of Geophysical Research: Oceans. doi: 10.1002/jgrc.20270. It is expected that the data set will be periodically updated with contemporary data as it becomes available. There are four sub-streams within this data set. A monthly and an 8-day series for MODIS/Aqua and similarly for SeaWIFS. Note that SeaWIFS ceased operation in late 2010 so there will be no further SeaWIFS data. The data represented by this record is weekly data for SeaWIFS.
-
The most recent field study of the Little Swanport estuary, Tasmania carried out by Crawford et al. (2006) collected monthly samples at sites throughout the estuary between January 2004 and January 2005. Measurements included water column nutrients, chlorophyll-a, dissolved oxygen, salinity, phytoplankton, zooplankton and oyster growth. This work demonstrated that freshwater flows had a significant effect on salinity, turbidity, dissolved oxygen and nutrient levels in the estuary. However, monthly sampling didn’t provide the temporal resolution necessary to detect potential flow-on effects on the biology (e.g. phytoplankton and zooplankton dynamics, oyster growth). To gain an improved understanding of the temporal dynamics of the estuary, including the response to freshwater flow, samples were collected weekly (chlorophyll-a), fortnightly (nutrients and zooplankton) and bimonthly (oysters) between March 2006 and June 2008 at a site in the lower estuary where the majority of oysters are farmed
-
The Aqua and Orbview satellites carry a MODIS and SeaWIFS sensors (respectively) that observes sunlight reflected from within the ocean surface layer at multiple wavelengths. These multi-spectral measurements are used to infer the concentration of chlorophyll-a (Chl-a), most typically due to phytoplankton, present in the water. There are multiple retrieval algorithms for estimating Chl-a and aggregating the data over time. This data set is a reprocessed copy of 9km monthly and 8-day versions produced globally by NASA, adjusted for the Southern Ocean south of latitude 30S. The full methodology is described in Johnson, R., Strutton, P.G., Wright, S.W., McMinn, A., Meiners, K.M., 2013. Three improved satellite chlorophyll algorithms for the Southern Ocean. Journal of Geophysical Research: Oceans. doi: 10.1002/jgrc.20270. It is expected that the data set will be periodically updated with contemporary data as it becomes available. There are four sub-streams within this data set. A monthly and an 8-day series for MODIS/Aqua and similarly for SeaWIFS. Note that SeaWIFS ceased operation in late 2010 so there will be no further SeaWIFS data. The data represented by this record is monthly data for MODIS/Aqua.
-
This resource is a Map of Vessel traffic in the Australian EEZ for the periods 2018/19 - 2022/23 and current 2022/23. The data presented here are summaries of the tracks of vessels between the points identified by either AUSREP or AIS, summarised to the number of KM per 0.1 deg grid square. The Craft Tracking System (CTS) and Mariweb are AMSAs vessel traffic databases. They collect vessel traffic data from a variety of sources, including terrestrial and satellite shipborne Automatic Identification System (AIS) data sources. This dataset has been built from AIS data extracted from CTS, and it contains vessel traffic data for the month of November 2024. The dataset covers the extents of Australias Search and Rescue Region. Each point within the dataset represents a vessel position report and is spatially and temporally defined by geographic coordinates and a Universal Time Coordinate (UTC) timestamp respectively. https://www.operations.amsa.gov.au/spatial/DataServices/DigitalData
IMAS Metadata Catalogue