Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
We hypothesised that New Zealand sea lions from Campbell Island/Motu Ihupuku of various sex and age classes would utilise the water column differently due to differing physiological constraints and therefore have different accessibility to prey resources. We tested whether sea lion diving behaviour varied in relation to (i) age and sex class, (ii) time of day and (iii) water depth. We also hypothesized that the proportion of benthic/pelagic diving, and consequently risk of fisheries interaction, would vary in relation to age and sex. Satellite telemetry tags were deployed on 25 NZSL from a range of age/sex classes recording dive depth, duration and location. Adult females and juveniles used inshore, benthic habitats, while sub-adult males also utilised benthic habitats, they predominantly used pelagic habitat at greater distances from the island. Adult females and juveniles exhibited shorter dives than the same age/sex classes at the Auckland Islands, suggesting a lower dive effort for these age/sex classes at Campbell Island.
-
This dataset contains the input and output data for an extended optimum multiparameter analysis (eOMP). Input data for parameters are given (temperature, salinity, oxygen, nitrate, phosphate and silicate), as obtained from the cited CSIRO open access CTD bottle data for the 2018 SR3 occupation. Output parameters are the proportional contribution of 8 water masses that were defined in the eOMP analysis. The output remineralization estimate, Delta-O, is also given. All data are referenced to depth and geographical position (latitude, longitude) from corresponding CTD bottle data. The eOMP used here was configured following Pardo et al. (2017). Details on the equations, parameterization and end-members that characterize the regional oceanography can also be found in the Supplementary Materials of Traill et al. (2023), including the robustness of the OMP analysis and the uncertainties of both the SWTs’ contributions and the ΔO parameter (Sections S1.2 and S1.3, Table S1, Table S2, Table S3).
-
Southeastern Australia's marine waters are undergoing a trend of increased warming, surpassing the global average. This area has emerged as an alluring location for research on planktic microfossils, particularly dinoflagellate cysts, which are abundant in contemporary and Late Quaternary sediments. The composition of dinoflagellate cyst assemblages offers valuable information about the physical and biogeochemical properties of mid-latitude waters in this region. This study presents an analysis of cyst assemblages from marine sediment cores from waters inshore and offshore Maria Island, Tasmania, southeast Australia, up to 9 kyrs BP. The dominant cysts were Protoceratium reticulatum, Protoperidinium spp. (P. avellana, P. conicum, P.minutum, P. oblongum, P. subinerme, P. shanghaiense) and Spiniferites spp. (S. bulloideus, S. hyperacanthus, S. membranaceus, S. mirabilis, S. pachydermus, and S. ramosus). Inshore, Spiniferites spp. were more abundant (up to 61%), while P. reticulatum was dominant (up to 80%) at the offshore site. Impagidinium spp. and Nematosphaeropsis labyrinthus were exclusively detected offshore, with their increasing occurrence from 6 kyrs BP to present suggesting a transition from shallow coastal to stable deep-water habitat. Cysts of the Alexandrium tamarense complex were detected over the past 140 years and 9 kyrs BP at the inshore and offshore sites respectively, indicating an endemic long-term presence. Low abundances of Gymnodinium catenatum cysts were detected exclusively inshore from 50 years ago to present, suggesting recent bloom events. The limited southward penetration of the East Australian Current is indicated by the lack of warm-water cyst taxa such as Lingulodinium machaerophorum. Unlike coccolithophores, previously studied in the same sediment core, no discernible shift from cold to warm-water dinoflagellate cyst species was observed. The documentation of dinoflagellate cyst assemblages presented in this study will aid in predicting the effects of climate change, eutrophication, and introduction of novel species on local and broader community dynamics.
-
This dataset describes the relative abundance of an assemblage of commercially exploited pelagic fishes around Western Australia, mapped over a 30 arc-minute (0.5 degree) spatial grid. The data cover the period 1997-2006 and are derived from an analysis of commercial landings available through the Sea Around Us Project (http://www.seaaroundus.org/). Further details can be found in the following peer-reviewed publication: Bouchet PJ, Meeuwig JJ, Huang Z, Letessier TBL, Nichol SL, Caley MJ, Watson RA. 2017. Continental-scale hotspots of pelagic fish abundance inferred from commercial catch records. Global Ecology and Biogeography. DOI: 10.1111/geb.12619 Below is a full list of species considered, with their respective contributions to the total catch (%): -------------------------------------------------- Greenback horse mackerel / Trachurus declivis -- 10.92 % Greater amberjack / Seriola dumerili -- 0.05 % Samson fish / Seriola hippos -- 0.01 % Silver gemfish / Rexea solandri -- 2.80 % Snoek / Thyrsites atun -- 1.22 % Indo-Pacific blue marlin / Makaira mazara -- 2.87 % Striped marlin / Tetrapturus audax -- 0.26 % Black marlin / Makaira indica -- 0.17 % Indo-Pacific sailfish / Istiophorus platypterus -- 0.06 % Shortbill spearfish / Tetrapturus angustirostris -- 0.00 % Bluefish / Pomatomus saltatrix -- 0.13 % Southern bluefin tuna / Thunnus maccoyii -- 19.17 % Narrow-barred Spanish mackerel / Scomberomorus commerson -- 16.93 % Skipjack tuna / Katsuwonus pelamis -- 9.82 % Yellowfin tuna / Thunnus albacares -- 9.40 % Bigeye tuna / Thunnus obesus -- 7.67 % Albacore tuna / Thunnus alalunga -- 4.16 % Longtail tuna / Thunnus tonggol -- 0.78 % Kawakawa (mackerel tuna) / Euthynnus affinis -- 0.56 % Wahoo / Acanthocybium solandri -- 0.01 % Great barracuda / Sphyraena barracuda -- 0.25 % Tope shark / Galeorhinus galeus -- 6.66 % Swordfish / Xiphias gladius -- 6.09 %
-
Kelps are in global decline due to climate change, including ocean warming. To identify vulnerable species, we need to identify their tolerances to increasing temperatures and whether tolerances are altered by co-occurring drivers such as inorganic nutrient levels. This is particularly important for those with restricted distributions, which may already be experiencing thermal stress. To identify thermal tolerance of the range restricted kelp Lessonia corrugata, we conducted a laboratory experiment on juvenile sporophytes to measure performance (growth, photosynthesis) across its thermal range (4 – 22 °C). We found the upper thermal limit for growth and photosynthesis to be ~ 22 – 23 °C, with an optimum of ~ 16 °C. To determine if elevated inorganic nitrogen availability could enhance thermal tolerance, we compared performance of juveniles under low (4.5 µmol/day) and high (90 µmol/day) nitrate conditions at and above the thermal optimum (16 – 23.5 °C). Nitrate enrichment did not enhance thermal performance at temperatures above the optimum but did lead to elevated growth rates at the thermal optimum 16 °C. Our findings indicate L. corrugata is likely to be extremely susceptible to moderate ocean warming and marine heatwaves. Peak sea surface temperatures during summer in eastern and northeastern Tasmania can reach up to 20 – 21 °C and climate projections suggest that L. corrugata’s thermal limit will be regularly exceeded by 2050 as south-eastern Australia is a global ocean-warming hotspot. By identifying the upper thermal limit of L. corrugata we have taken a critical step in predicting the future of the species in a warming climate.
-
Trace element (TE) concentrations of juvenile Short-tailed Shearwaters collected on Great Dog Island, Tasmanian in 2017.
-
Satellite linked data loggers collecting temperature, conductivity, depth, location and time using Sea Mammal Research Unit tags.
-
Policy and decision makers often seek guidance as to the benefits of conservation and repair of coastal seascapes, to justify and underpin any potential investments. Much is already known about the broad habitat and nursery values of seascapes among the science community, but there is also a need for estimation of clear and unambiguous market-based benefits that may arise from investment in repair. Recognising that this economic knowledge is imperfect for Australian seascapes, three case studies spanning tropical, subtropical and temperate environments explored the benefits in question. The case studies focus on saltmarsh habitats in particular, which have received very little investment in repair despite subtropical and temperate coastal saltmarsh listed as vulnerable ecological community under Australian Federal legislation. A subset of economically important species and conservative judgments were used to characterise the minimum potential economic benefit. For each of the case studies the conclusion was that while the biological information will remain imperfect, the business case for investment in the repair and conservation of coastal seascapes is compelling. We outline priorities for further research to make the business case more tangible to policy makers, stakeholders and the general public.
-
A review of peer-reviewed publications was undertaken, focusing on coastal and marine microplastics relevant to South Eastern Australia (South Australia, Victoria, and New South Wales), as well as from ongoing citizen science programmes from AUSMAP. This dataset summarises basic information about the microplastics studies: the location of the study; if the study focused on water, sediment or biota; the type of biota (for biotic studies); and the DOI of the publication. Although the primary focus of this study was restricted to southeastern Australia, studies collated from other regions have also been included in this dataset. The outcomes of the literature review for other regions (QLD, NT, SA, WA, Tas) should not be considered comprehensive.
-
These files contain the data recorded from a mesocosm experiment conducted in Bergen, Norway 2022 which assessed the effect of simualted mineral-based (silicate or calcium) ocean alkalinity enhancement (OAE) on diatom silicification. Ten mesocosms were used in total, divided into two groups either the silicate- or calcium based group and alkalinity was increased by either 0, 150, 300, 450 or 600 µmol L-1 above natrually occuring levels. The PDMPO-fluorescence (an appropriate proxy for silicification) of diatoms was recorded on eight seperate days during the experiment. Accompanying data includes measured; macronutrients (nitrate, nitrite, phophate, silicate), total alkalinity, biogenic silica in the water column and sediment trap.