Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 823
  • Southeastern Australia's marine waters are undergoing a trend of increased warming, surpassing the global average. This area has emerged as an alluring location for research on planktic microfossils, particularly dinoflagellate cysts, which are abundant in contemporary and Late Quaternary sediments. The composition of dinoflagellate cyst assemblages offers valuable information about the physical and biogeochemical properties of mid-latitude waters in this region. This study presents an analysis of cyst assemblages from marine sediment cores from waters inshore and offshore Maria Island, Tasmania, southeast Australia, up to 9 kyrs BP. The dominant cysts were Protoceratium reticulatum, Protoperidinium spp. (P. avellana, P. conicum, P.minutum, P. oblongum, P. subinerme, P. shanghaiense) and Spiniferites spp. (S. bulloideus, S. hyperacanthus, S. membranaceus, S. mirabilis, S. pachydermus, and S. ramosus). Inshore, Spiniferites spp. were more abundant (up to 61%), while P. reticulatum was dominant (up to 80%) at the offshore site. Impagidinium spp. and Nematosphaeropsis labyrinthus were exclusively detected offshore, with their increasing occurrence from 6 kyrs BP to present suggesting a transition from shallow coastal to stable deep-water habitat. Cysts of the Alexandrium tamarense complex were detected over the past 140 years and 9 kyrs BP at the inshore and offshore sites respectively, indicating an endemic long-term presence. Low abundances of Gymnodinium catenatum cysts were detected exclusively inshore from 50 years ago to present, suggesting recent bloom events. The limited southward penetration of the East Australian Current is indicated by the lack of warm-water cyst taxa such as Lingulodinium machaerophorum. Unlike coccolithophores, previously studied in the same sediment core, no discernible shift from cold to warm-water dinoflagellate cyst species was observed. The documentation of dinoflagellate cyst assemblages presented in this study will aid in predicting the effects of climate change, eutrophication, and introduction of novel species on local and broader community dynamics.

  • Tidal wetlands are vulnerable to accelerated rates of sea-level rise projected by climate models. The Surface Elevation Table (SET) is a technique applied globally to assess the extent of vertical adjustment of tidal wetlands to sea-level rise over decadal timescales. This record describes the SET data from the Australian network (OzSET). This data can be used for analyzing wetlands elevation change at the study sites

  • This record provides an overview of the NESP Marine and Coastal Hub small-scale study - "OzSET: Integration and publication of the Australian Surface Elevation Table dataset". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Australian coastal floodplains and wetlands are threatened by accelerating rates of sea-level rise. The assessment of vulnerability of these environments requires measurements of rates of vertical accretion, subsidence and elevation gain across a range of coastal settings. Australia’s network of Surface Elevation Tables is one of the most extensive in the world, consisting of over 200 benchmark monitoring stations from Westernport Bay, Victoria to Darwin Harbour, NT. We collate and make available through a national platform data on accretion, subsidence and elevation change in mangroves, saltmarshes, seagrasses and tidal freshwater forests, information vital to coastal risk assessment. Planned • SET-MH database: collation of data from existing Surface Elevation Table (SET-MH) stations [dataset] • Final technical report with analysed data, including a short summary of recommendations for policy makers of key findings [written]

  • This record provides an overview of the NESP Marine and Coastal Hub scoping study - "Research needs for assessment and monitoring of nutrients, chemicals and antimicrobials in the marine environment". No data outputs were generated by this project. -------------------- Water quality can be impacted by a large suite of chemical and microbiological contaminants introduced from a variety of sources. There are a number of emerging contaminants and broad ranges of point sources, including a variety of chemical (e.g. heavy metals, pharmaceuticals, pesticides, nutrients) and microbiological (e.g. pathogens, antibiotic resistant microbes) contaminants that are discharged in sewage, stormwater, estuarine flows and industrial wastes. This project will involve a desktop scoping study to collate relevant datasets and current water quality monitoring goals and activities; engage with key stakeholders through workshops, interviews, and surveys to further define priorities; and conduct a risk assessment to assess impacts to marine and coastal water quality. This project will deliver a clear framework for highlighting knowledge gaps, future research directions and water quality management priorities. Outputs • Final technical report with analysed data, including survey outcomes and a short summary of recommendations for policy makers of key findings [written] ---no data outputs were generated by this project---

  • Carbon and nitrogen isotope data for J. edwardsii lobsters from eight sites in SE Australia.

  • NOTE THIS IS AN ARCHIVED VERSION OF THE GLOBAL FISHERIES LANDING DATA AND MAY BE INCOMPLETE. The current version of the data is available from https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/5c4590d3-a45a-4d37-bf8b-ecd145cb356d and should be used for all future analyses from 16/01/2019. For any questions about version changes to this dataset, please contact the Point of Contact nominated in this record. Global fisheries landings supplied by a number of agencies (FAO/UN, CCAMLR, NAFO, ICES etc) are mapped to 30-min spatial cells based on the range/gradient of the reported taxon, the spatial access of the reporting country's fleets, and the original reporting area. This data is associated with types of fishing gears. Estimates of illegal, unreported and unallocated landings are included as are estimates of the weight of fisheries products discarded at sea. Mapping the source of fisheries capture allows investigation of the impacts of fishing and the vulnerability of fishing (with its associate food security implications) to climate change impacts.

  • Categories    

    The final lithospheric breakup of the Australian-Antarctic rift system remains controversial due to sparse geological constraints on the nature of the basement along the ocean-continent transition zones. We present new interpretations of multichannel seismic reflection transects, as well as new petrological data of dredged mantle rocks along the East Antarctic margin (Seamount B, offshore Terre Adélie). By combining both datasets, we show that a 50–100 km wide domain of cold (900°C), fertile subcontinental mantle was exhumed along the non-volcanic Antarctic margin. The dredged peridotites preserve characteristics similar to mantle xenoliths found in syn- to post-rift volcanism at the eastern end of the Australian margin (Victoria and Tasmania), indicating the sampling of a common fertile subcontinental mantle during rifting between Australia and Antarctica. Seamount B represents the initial stages of exhumation of cold subcontinental lithosphere along an ocean-continent transition during rifting. This thick mantle domain was likely affected by syn-rift melt impregnation at high-pressure (8 kbar), leading to the formation of plagioclase-pyroxenites. Overall, the combination of continental rifted blocks, a 50-100 km wide domain of volcanic-poor subcontinental mantle and (ultra)-slow spreading implies that ocean-continent transition zones along the Australian-Antarctic margins represent a recent analogue to ocean continent transition zones from the Jurassic Western Tethys. Additionally, evidence of syn-rift melt stagnation at high pressure suggests that magmatism along the Australian-Antarctic rifted margins was sufficient to form magnetic anomalies that can be used as isochrons despite their formation in lithosphere other than mature, steady-state ocean crust.

  • Biological ocean data collected from ships find reuse in aggregations of historical data. These data are heavily relied upon to document long term change, validate satellite algorithms for ocean biology and are useful in assessing the performance of autonomous platforms and biogeochemical models. There is a need to combine subsurface biological and physical data into one aggregate data product to support reproducible research. Existing aggregate products are dissimilar in source data, have largely been isolated to the surface ocean and most omit physical data. These products cannot easily be used to explore subsurface bio-physical relationships. We present the first version of a biological ocean data reformatting effort (BIO-MATE, https://gitlab.com/KBaldry/BIO-MATE). BIO-MATE uses R software that reformats openly sourced published datasets from oceanographic voyages. These reformatted biological and physical data from underway sensors, profiling sensors and pigments analysis are stored in an interoperable and reproducible BIO-MATE data product for easy access and use.

  • Voyage IN2019_V04 contributed an additional 29,000 kms2 of seafloor survey data to the Coral Sea knowledge base. From this new bathymetric data individual seamounts have been extracted and have been classified to the Geoscience Australia Geomorphology Classification Scheme. This dataset contains two layers representing the classification layers- 1) Surface (Plain, Slope, Escarpment) and 2) fine scale Geomorphology of the seamount for the Cassowary Seamount. Ongoing research with this survey data will provide new insights into the detailed geomorphic shape and spatial relationships between adjacent seabed features. This information will be released in future publications to show the potential of how the scale of such seafloor data can be used for predictive habitat modelling when analysed with the biological data overlays.

  • Categories  

    These data were collected on the RV L'Astrolabe (platform code: FHZI) from 27/02/2007 to 04/03/2007 on a trip from Dumont D'Urville to Hobart. Maximum photochemical efficiency of photosystem II (PSII), also called maximum quantum yield of PSII (Fv/Fm), has become one of the most widely utilized fluorescence parameters in phytoplankton research. It represents the potential photochemical efficiency, which is the probability that the light energy captured by the photosynthetic apparatus is being utilized as photochemistry. Fv/Fm has been shown to have an instant response to variations in physical and chemical properties and is interpreted as a diagnostic of the overall health or competence of phytoplankton. Together with the absorption cross section area of PSII and chlorophyll concentration, it can be used to measure primary production (Cheah et al. 2011, Deep Sea Research). Seawater from 3 m depth was supplied continuously from the ship’s clean seawater line. FRR fluorescence yields were measured continuously at 1 minute intervals in dark-adapted state (! 15 minutes dark-adaptation) using a flash sequence consisting of a series of 100 subsaturation flashlets (1.1 μs flash duration and 2.8 μs interflash period) and a series of 20 relaxation flashlets (1.1 μs flash duration and 51.6 μs interflash period).