Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 927
  • Categories    

    The Huon Commonwealth Marine Reserve (CMR) covers a broad depth range from the inner continental shelf at about 70 m, to abyssal depths of more than 3000 m. The majority of the area is in deep water. The Tasman Seamounts Marine Reserve that was proclaimed in 1999 has been wholly incorporated into the Huon Commonwealth marine reserve. The reserve contains a cluster of seamounts that appear as cone-shaped submerged mountains, which provide a range of depths for a diversity of plants and animals. The peaks of many of the reserve's seamounts are between 750 m and 1000 m below the sea surface and support endemic species, including large erect corals and sponges. Some of the flora and fauna are hundreds and possibly thousands of years old, making them some of the longest-lived animals on Earth. The reserve also provides an important connection between seamounts of the Indian Ocean and the Tasman Sea. This map of the geomorphology of the Huon CMR was prepared for the NESP Marine Biodiversity Hub Theme D (1) project: National data collation, synthesis and visualisation to support sustainable use, management and monitoring of marine assets.

  • Mesozooplankton community composition and structure were examined throughout the D’Entrecasteaux Channel, Huon Estuary and North West Bay, Tasmania, from November 2004 to October 2005, the data represented by this record was collected on the 06/09/2005. The composition of the mesozooplankton community was typical of inshore, temperate marine habitats, with seasonally higher abundance in summer and autumn and lower numbers in winter and spring. Copepods were the largest contributors to total abundance across all seasons and stations, while cladocerans and appendicularians were proportionally abundant in spring and summer. The faecal pellets of these three main groups, along with those of krill and amphipods, also contributed significantly to material recovered from sediment traps. Meroplanktonic larvae of benthic animals showed short-term peaks in abundance and were often absent from the water column for long periods. Spatially, North West Bay and the Channel had a higher representation of typically marine species, including Calanus australis and Labidocera cervi, while truly estuarine species, such as the copepod Gladioferens pectinatus, were more important in the Huon Estuary.

  • Categories      

    The Fisheries Research and Development Corporation Project (FRDC) No. 2001/060 characterised and identified the distribution of the different benthic habitats of the Recherche Archipelago and identified the distribution of assemblages of fish, mobile invertebrates, filter feeding communities and seagrasses and the patterns and processes which structure them. Benthic habitat were determined from the interpretation of Landsat imagery, sidescan sonar imagery and video validation data collected within the Recherche region from May 2002 to November 2003.

  • Sea urchins have the capacity to destructively overgraze kelp beds and cause a wholesale shift to an alternative and stable ‘urchin barren’ state. However, their destructive grazing behaviour can be highly labile and contingent on behavioural shifts at the individual and local population level. Changes in supply of allochthonous food sources, i.e. availability of drift-kelp, is often suggested as a proximate trigger of change in sea urchin grazing behaviour, yet field tests of this hypothesis are rare. Here we conduct a suite of in situ behavioural surveys and manipulative experiments within kelp beds and on urchin barrens to examine foraging movements and evidence for a behavioural switch to an overgrazing mode by the Australian sea urchin Heliocidaris erythrogramma (Echinometridae). Tracking of urchins using time-lapse photography revealed urchin foraging to broadly conform to a random-walk-model within both kelp beds and on barren grounds, while at the individual level there was a tendency towards local ‘homing’ to proximate crevices. However, consistent with locally observed ‘mobile feeding fronts’ that can develop at the barrens-kelp interface, urchins were experimentally inducible to show directional movement toward newly available kelp. Furthermore, field assays revealed urchin grazing rates to be high on both simulated drift-kelp and attached kelp thalli on barren grounds, however drift-kelp but not attached kelp was consumed at high rates within kelp beds. Time-lapse tracking of urchin foraging before/ after the controlled addition of drift-kelp on barrens revealed a reduction in foraging movement across the reef surface when drift-kelp was captured. Collectively results indicate that the availability of drift-kelp is a pivotal trigger in determining urchin feeding modes, which is demonstrably passive and cryptic in the presence of a ready supply of drift-kelp. Recovery of kelp beds therefore appears possible if a sustained influx of drift-kelp was to inundate urchin barrens, particularly on reefs where local urchin densities and where grazing pressure is close to the threshold enabling kelp bed recovery.

  • Limited SCUBA surveys of weedy seadragons at Kingston, Blackman's Bay & Bicheno and spiny pipehorses at Simpson's Point, Bruny Island. Mark-recapture study of approximately 40 seadragons and 10 spiny pipehorses.

  • Voyage IN2019_V04 contributed an additional 29,000 kms2 of seafloor survey data to the Coral Sea knowledge base. From this new bathymetric data individual seamounts have been extracted and have been classified to the Geoscience Australia Geomorphology Classification Scheme. This dataset contains two layers representing the classification layers- 1) Surface (Plain, Slope, Escarpment) and 2) fine scale Geomorphology of the seamount for the Lexington Seamount. Ongoing research with this survey data will provide new insights into the detailed geomorphic shape and spatial relationships between adjacent seabed features. This information will be released in future publications to show the potential of how the scale of such seafloor data can be used for predictive habitat modelling when analysed with the biological data overlays.

  • Categories  

    A project investigating the restoration of string kelp (Macrocystis pyrifera) habitat on Tasmania's east and south coasts. Macroalgae, fish and invertebrate counts were collected as part of the project using the Edgar Barrett transect technique in the Derwent Estuary and in the Mercury Passage on the South East Tasmania. Other fish, invertebrate and macroalgal data was also collected.

  • Five polymorphic microsatellite loci were developed and then used to assess the population genetic structure of a commercially harvested merobenthic octopus species (Octopus maorum) in south-east Australian and New Zealand (NZ) waters. Beak and stylet morphometrics were also used to assess population differentiation in conjunction with the genetic data.

  • Describes the database used for storing Southern Rock Lobster (Jasus edwardsii) biological data collected by observers on commercial boats and dedicated research trips incorporating information on sex, length, weight, damage, reproduction, bycatch, protected species interaction, location, depth, tagging and equipment type.

  • Categories  

    Belt transect surveys (50m) were used to monitor the benthic community structure through time at experimental (lobster additions/ research reserve sites or abalone diver urchin culls) and control sites in eastern Tasmania. Measures of percentage cover of key algal guilds, percentage of reef grazed by sea urchins, number of sea urchins (Centrostephanus rodgersii, Heliocidaris erythrogramma), Abalone (Haliotis Rubra), Rock lobsters (Jasus edwardsii) and type of substratum were recorded.