Creation year

2024

19 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 19
  • This record provides an overview of the NESP Marine and Coastal Hub Research Plan 2024 project "Unbroken whispers: the ripples connecting sea kin". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Knowledge, in all its forms, is key to effectively protecting and recovering threatened and migratory whales and dolphins. Indigenous ecological knowledge (IEK) has guided Indigenous peoples through many uncertain climate and ecological fluctuations. IEK has also been used as part of protected area and species management for many thousands of years. More recently, IEK has shown huge potential to contribute to our understanding of threatened and migratory whales and dolphins, but this knowledge has not historically been collated, analysed or properly considered. Consequently, there is an absence of Indigenous perspectives and use of cultural knowledge informing the protection and recovery of EPBC listed threatened and migratory species. This Indigenous-led project will identify and share (where appropriate) cultural knowledge of relationships with whales and dolphins, and connections between land, sea and sky. Indigenous communities will participate in research that explores cultural ideology around kinship and responsibilities to kin, through expressing the knowledge, values and concerns they hold for whales and dolphins. The acquired knowledge and methods will support the cultural governance of sea Country by Indigenous communities and organisations, and policymaking, implementation and review by government agencies in relation to resource use and conservation. Outputs • GIS visualisation package of key geospatial layers related to connecting land and sea in the context of cultural keystone species [dataset] • Final project report [written]

  • Categories    

    This record describes data collected for the 2013 report "Synthesis of seagrass mapping studies conducted by the Water Science Branch of the Department of Water", and collected more recently by the Department of Water and Environmental Regulation ongoing monitoring. This project record provides linkage to each of metadata records describing seagrass data collected from the 11 study areas: Beaufort Inlet (2009), Hardy Inlet (2008), Irwin Inlet (2009), Leschenault Estuary (2009), Oyster Harbour (1988, 1996, 2006), Princess Royal Harbour (1996, 2006) Stokes Inlet (2009), Swan Canning (2011), Walpole Nornalup Inlets (2009), Wellstead Estuary (2009), Wilson Inlet (2007, 2008). Additional monitoring data is available from the WA DWER seagrass group via https://data.wa.gov.au for the following study areas: Leschenault Estuary (2014-2023), Peel Harvey Estuary (2021), Hardy Inlet (2018, 2020, 2023), Wilson Inlet (2017-2022), Wilson Inlet (2017-2022), Oyster Harbour (2019, 2021), Princess Royal Harbour (2021). To access the source datasets from the 2013 Synthesis for each study site/sampling occasion in their original (unaggregated) form, see child records linked to this parent record.

  • This record provides an overview of the NESP Marine and Coastal Hub Research Plan 2024 project "Assessing the condition of natural values within priority temperate Australian Marine Parks to evaluate management effectiveness". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Parks Australia has developed an adaptive management approach to the Australian Marine Parks (AMPs), which cover 48% of Australia's Exclusive Economic Zone. Key to the success of this framework is robust biological and ecological data to assess the performance of management approaches. The project will collect data to measure the trend in natural values to allow for evaluation of management performance at various levels on the continental shelf regions of four AMPs: Hunter (Temperate East Network), Beagle (South-east Network), South-west Corner and Geographe (South-west Network). These AMPs were selected based on previous partnerships between Parks Australia and NESP projects. This project aligns with Parks Australia’s science plans, supporting adaptive management and addressing emerging threats. Marine sampling and monitoring Standard Operating Procedures (SOPs) will be used to systematically collect data that will provide trusted scientific evidence for decision-makers, aiding in effectively safeguarding the ecological integrity of these marine ecosystems. Outputs • Fish scoring data from BRUV, BOSS and ROV platforms [dataset] • Benthic imagery with annotations from AUV platform [dataset] • Lobster catch data [dataset] • Spatially-referenced highlight videos/imagery for communication purposes [dataset] • Final project report [written]

  • This record provides an overview of the NESP Marine and Coastal Hub Research Plan 2024 project "De-risking nature repair activities in Australian coastal and marine ecosystems". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Scaling up marine and coastal restoration and nature-based solutions (NbS) (“nature repair”) in Australia is necessary to achieve national and international commitments to biodiversity and climate change mitigation and adaptation. The goal of this project is to guide coastal marine nature repair in Australia at scales relevant to help meet national targets through the following aims: 1) Update a stocktake of the coastal and marine restoration and NbS activities which have occurred in Australia. 2) Develop the evidence-base to de-risk coastal and marine nature repair. 3) Scope a forward-looking coordinated framework to support continued implementation of investments in nature repair of Australia’s coastal and marine ecosystems. Addressing these aims is required to move forward beyond uncoordinated efforts to achieve effective seascape-scale interventions that support the Nature Positive Plan and international targets. Outputs • Updates to Australian Coastal Restoration Network database, and the Living Shorelines Australia database [dataset] • Draft national framework for coordinated nature repair [written] • Final project report [written]

  • Categories    

    This dataset presents the results of a seafloor habitat modeling exercise for the 'Capes region' of the South-west Corner Marine Park, southern WA. The model classifies five broad habitat types (hereafter 'ecosystem components'): seagrass, macroalgae, sessile invertebrates, bare consolidated substrata, and bare unconsolidated substrata. Modeling was conducted at two spatial scales to assess the effectiveness of using broad-scale (~250 m) spatial covariates derived from bathymetry in mapping habitat classes and to compare the modelling outcomes with those obtained using finer-resolution input data. The fine-scale mapping focused on an IUCN II zone near Margaret River, using a seamless 5 m resolution multibeam bathymetry composite. The broad-scale mapping covered multiple IUCN zones, including the southwestern Geographe Australian Marine Park (AMP), the northwestern tip of the South-west Corner AMP, and the Ngari Capes WA State Marine Park. This component used the 250 m resolution 2023 AusBathyTopo grid from Geoscience Australia. Habitat maps were constructed using (1) the bathymetry data sources described above; (2) ground-truthing observations from stereo-BRUV and BOSS camera systems; and (3) Physical covariates, all smoothed to 5 m or 250 m resolution, for the fine- and broad-scale mapping, respectively. Source datasets are available from: • Geoscience Australia's eCat: https://dx.doi.org/10.26186/145281 (5 m multibeam bathymetry) and https://doi.org/10.26186/148758 (250 m DEM bathymetry) • Squidle+: http://squidle.org/geodata/explore (benthic imagery annotations - see also outputs from NESP MaC Project 2.4: https://doi.org/10.25959/6G5A-3G03) • AODN Portal: https://portal.aodn.org.au/search (IMOS oceanographic datasets). This analysis uses the modelling methodology developed in NESP Project 2.1, which extended the ecosystem component modelling to include all temperate Australian shelf waters at a resolution of 250 m (https://doi.org/10.25959/BVJ7-D984). Analysing the scale effects effects of spatial covarariate inputs was undertaken by NESP Project 2.3, along with exploration of visualisation options regarding prediction certainty in consultation with Parks Australia (management end-users). Further details on sampling design for ground-truthing observations and the modelling techniques are available in the NESP MaC Project 2.1 Final Report: https://www.nespmarinecoastal.edu.au/publication/improving-seabed-habitat-predictions-for-southern-australia. A description on this specific South-west Corner case study and the spatial scale analysis is described in the NESP MaC Project 2.3 Final Report: https://www.nespmarinecoastal.edu.au/publication/improving-knowledge-transfer-to-support-australian-marine-park-decision-making-and-management-effectiveness-evaluation. A selection of mapping (WMS) services are listed in the 'Downloads & Links' section of this record. See the 'Lineage' section for a full description of the data packages available for download, and for more visualisation options.

  • Categories  

    This aim of this project is to identify and map critical habitats for Australian sea lions (Neophoca cinerea) to assess the ecological value of different habitats for sea lions and identify risks to their populations. Through this project we collected animal-borne video, GPS, time-depth and accelerometer/magnetometer data from eight adult female Australian sea lions from Olive Island (n=4) on the western Eyre Peninsula and Seal Bay (n=4) on Kangaroo Island in South Australia. Sea lions were instrumented with animal-borne cameras with integrated accelerometers/magnetometers (CATS Cam, 135 x 96 x 40 mm, 400 g) and satellite-linked GPS loggers with integrated time-depth recorders (SPLASH-10, Wildlife Computers, 100 x 65 x 32 mm, 200 g). Sea lions were sedated and anaesthetised and bio-logging instruments were glued to the pelage on the dorsal midline. Bio-logging instruments were recovered after a single foraging trip (~1-6 days). Populations of the endangered Australian sea lion have declined by >60% over the last 40 years. Australian sea lion populations show a marked uneven distribution in abundance across their range, which suggests that localised risk profiles from threats vary at small spatial scales. Fine scale differences in habitat-use are thought to underpin these differences. However, knowledge of the habitats that are critical to Australian sea lions is poor and their vulnerability to human impacts and threats at the fine-scale is not well understood. The data collected in this project provides fundamental information on critical benthic habitats for Australian sea lions, the differences in foraging behaviour of individual sea lions and their prey preferences. The information collected under this project improves our understanding of threats to sea lion populations and will support future conservation actions to recover the species.

  • This record provides an overview of the NESP Marine and Coastal Hub Research Plan 2024 project "Delivery of science to support the implementation of a marine park management effectiveness system". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Parks Australia has developed an adaptive management approach to the Australian Marine Parks (AMPs). This Management Effectiveness (ME) system is designed to allow Parks Australia to test the effectiveness of the AMP system and ensure that AMPs are effectively and appropriately managed. Parks Australia have identified priorities for research to assist in the implementation of the ME system, to identify scientific outputs needed for network management and adapt to new issues in the marine environment through the Australian Marine Parks Science Plan. This project will deliver several of the key science needs identified in the plan and will draw on the combined expertise of the partners and scientists within the Marine and Coastal Hub to generate the outcomes which build onto extensive work previously delivered. The project will deliver the following four outputs required for the 2028 National AMP management plan review: 1) Develop monitoring protocols for Tier 1 & 2 priority monitoring sites to assess the effectiveness of management arrangements; 2) Improve workflows for assessing natural values, activities and pressures; 3) Identify and define impacts and management options for emerging industries; and 4) Improve overall understand the entire AMP system through increased collaboration. Outputs • Updated national-scale spatial datasets of: (1) Natural Values Ecosystems; (2) Key Natural Values; (3) Pressures & Activities; (4) Cumulative impacts; (5) Ecosystem-level risk assessment (absolute risk) [datasets] • Refined list of monitoring priorities for AMPs [written] • Monitoring protocols for monitoring priorities [written] • Final project report [written]

  • This record provides an overview of the NESP Marine and Coastal Hub Research Plan 2024 project "An Indigenous-led approach to advance the health and wellbeing of Tebrakunna Country and people of the Coastal Plains nation, north-eastern Tasmania". No data outputs are planned for this project. -------------------- This research is an Indigenous led co-designed project between Melythina Tiakana Warrana Aboriginal Corporation (MTWAC) and the University of Tasmania spanning all four NESP Hubs. It is focusing on Healthy Country Planning (HCP) processes at Tebrakunna as the Coastal Plains Nation are re-connecting to Ancestral land and sea Country. Through MTWAC’s strategic direction, key priorities and areas of interest there is a core focus on concepts surrounding healthy Country and healthy people that will develop throughout the project and contribute to the HCP for MTWAC. MTWAC aims to be a sustainable organisation, manage culture and heritage, and contribute to healing and wellbeing and broader community engagement. To achieve these priorities, through MTWAC-led HCP processes, Western scientists will work closely with MTWAC, including Indigenous Researchers within this community, Tebrakunna Country Ranger Program and HCP Facilitators. The project will assess priority values, targets, threats and viability of land and sea of Tebrakunna Country. We will determine within budget and time constraints where efforts will be best targeted to improve and protect the health of Country and people at Tebrakunna. Monitoring and evaluation, including of the wellbeing of people and Country, through measurable, community-developed goals and strategies will improve capacity and employment opportunities of MTWAC and the Tebrakunna Rangers. Outputs • Report characterising Coastal Country, including threats and opportunities assessment [written] • Co-designed wellbeing framework, methods and tools [written] • Final project report [written] ---no data outputs are planned for this project---

  • The Seamap Australia National Benthic Habitat Layer (NBHL) is a compilation of benthic habitat datasets obtained from various sectors including research, government, industry and community sources, across Australia. Disparate datasets are integrated into a single national-scale benthic habitat database, and classified uniformly under a national classification scheme implemented as a controlled vocabulary (https://vocabs.ardc.edu.au/viewById/129). For acceptance into the 'formal' (validated_ Seamap Australia NBHL (see https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/4739e4b0-4dba-4ec5-b658-02c09f27ab9a), source habitat datasets must meet a set of Acceptance Criteria (documented in https://seamapaustralia.org/wp-content/uploads/2023/01/SeamapAustraliaDataAcceptanceGuidelines.pdf). Broadly speaking, for inclusion in the Seamap Australia NBHL, datasets must: (1) be well-described by metadata or associated documentation; (2) employ a single, consistent classification scheme which avoids non-deterministic or ambiguous terms; (3) bequality-controlled by the provider prior to contribution; (4) beacquired using an established and community-endorsed form of data collection (eg satellite, aerial or acoustic remote sensing); and (5) have documented evidence of ground-truthing validation at the time of data collection (e.g. drop camera, towed video, benthic grabs). This record describes habitat datasets that meet Acceptance Criteria 1-4, but *have not* been validated/ground-truthed and are therefore ineligible for inclusion in the formal Seamap Australia NBHL. They have been synthesised and uniformly classified using an identical methodology to the NBHL, but represent an intermediate collection of habitat datasets that would benefit from field ground-truthing in order to validate the habitat classifications. The Seamap Australia synthesis of unvalidated habitat datasets can be viewed, analysed and downloaded from the Seamap Australia data portal (https://seamapaustralia.org/map). This dataset should be considered a “live” asset and will continue to develop as more unvalidated habitat datasets are collected or made available. The most current (2024) version of the data is available from the following endpoints: WMS: https://geoserver.imas.utas.edu.au/geoserver/seamap/wms WFS: https://geoserver.imas.utas.edu.au/geoserver/seamap/wfs Layer name: SeamapAus_NBHL_unvalidated Various download options are supplied in the “Online resources” section of this record.

  • This record provides an overview of the NESP Marine and Coastal Hub Research Plan 2024 project "Potential impacts of offshore wind developments on eastern Indian Ocean pygmy blue whales (Balaenoptera musculus brevicauda)". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Pygmy blue whales (Balaenoptera musculus brevicauda) are listed as Endangered under the Environment Protection and Biodiversity Conservation Act (EPBC 1999), and their distribution and Biologically Important Areas (BIAs) overlap with areas proposed for offshore renewable energy (ORE) development in Western Australia, South Australia, Victoria, and potentially NSW. This project will quantify the distribution and location of areas of residency (e.g., foraging) for eastern Indian Ocean pygmy blue whales, where these overlap with proposed ORE developments, and assess the potential impacts of these developments to the species in addition to existing impacts from other anthropogenic activities. The outputs from this project will assist government, regulators, proponents, and other stakeholders in the assessment and mitigation of ORE projects to this threatened species, and will identify future research and associated data collection needs. Outputs • Spatial layers quantifying the relative distribution including migratory corridors and foraging areas across the known eastern Indian Ocean pygmy blue whale range [dataset] • Spatial layers of habitat suitability distribution [dataset] • Spatial layers for human activities identified as key pressures in this study [dataset] • Spatial layers of cumulative impact score across the species' range including potential threats from ORE and existing threats from other industries [dataset] • Final project report [written]