From 1 - 7 / 7
  • This record provides an overview of the NESP Marine and Coastal Hub project "Mapping critical Australian sea lion habitat to assess ecological value and risks to population recovery". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Populations of the endangered Australian sea lion have declined by >60% over the last 40 years. There is a marked uneven distribution in abundance and trends across the species range, suggesting that localised risk profiles from threats vary at small spatial scales. Fine scale differences in habitat use are thought to underpin these differences, yet knowledge about the species dependency on key habitats and their vulnerability to human impacts is limited. This project will deploy underwater cameras onto sea lions to identify and map their critical habitats, assess their ecological value and identify risks to populations. Results will improve our understanding of threats to sea lion populations and support future conservation actions to recover the species. Outputs • Tracking data from sea lion-deployed tags: location, depth, time, temperature, light, acceleration [dataset] • Timestamped video footage from sea lion-deployed cameras [dataset] • Final project report [written]

  • Categories    

    This record describes the outputs of two different modelling exercises that were used to characterise the seafloor habitats for temperate Australian waters. The modelled area includes all shelf waters (<250m depth) in southern Australia south of the Tropic of Capricorn. Bioregional benthic habitat maps were constructed using (1) the Geoscience Australia 250m 2023 grid (ref); (2) ground-truthing observations derived from horizontally facing imagery from stereo-BRUV and BOSS camera systems; and (3) several physical datasets as covariates in model development (all oceanographic variables smoothed to 250m resolution). Source data is available from Geoscience Australia's eCat: https://doi.org/10.26186/148758 (bathymetry), Squidle+: (benthic imagery annotations), and (3) AODN Portal: https://portal.aodn.org.au/search (IMOS oceanographic datasets). The specific subset of GA observations used in this modelling exercise is available from https://github.com/UWA-Marine-Ecology-Group-projects/nesp-2.1/blob/main/data/tidy/NESP-2.1_broad-habitat.csv. See the NESP Mac Project 2.1 final report for a description of the sampling design for ground-truthing observations and annotation technique. -----Functional Reef model (binomial)----- This model discriminates ‘functional reef’ from sediment (non-reef) ecosystem types. Functional reef is defined by this project as “any seabed area functioning as a reef, which may include dense beds of sessile invertebrates or molluscs”. This term was chosen because much of the continental shelf is dominated by sediment yet is stable enough to support emergent sessile biota that provide structure and resources for “reef-affiliated” species. The modelling approach uses a Bayesian representation of a Binomial generalised linear model. For ground-truthing benthic annotations, the following benthic categories were collapsed into the ‘functional reef’ classification: sessile invertebrates, bare rocky reef (consolidated), macroalgae, Amphibolis spp. and Thalassodendron spp. All other benthic classifications were assigned to the ‘non-reef’ category. -----Ecosystem Component model (multinomial)----- This model discriminates between five broad habitat types (hereafter ‘ecosystem components’): seagrass, macroalgae, sessile invertebrates, bare consolidated substrata, bare unconsolidated substrata. The modelling approach uses a Bayesian implementation of a Multinomial generalised linear model. For ground-truthing benthic annotations, benthic annotations for mobile species (e.g. echinodermata) were discarded. All remaining annotations were collapsed into the five broad ecosystem components. A selection of mapping (WMS) services are listed in the 'Downloads & Links' section of this record. See the 'Lineage' section for a full description of the data packages available for download, and for more visualisation options.

  • This dataset has been superseded by https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/0145df96-3847-474b-8b63-a66f0e03ff54 (Victorian Statewide Marine Habitat Map 2023). The Victorian Benthic Habitats - Port Phillip Bay (CBICS) is a synthesis of all existing benthic habitat characterisations of the embayment which have been reclassified to conform to the Combined Biotope Classification Scheme (CBiCS). Base information for the synthesised dataset were sourced from data provided by: Marine and Freshwater Resources Institute, Queenscliff, Victoria Institute for Sustainability and Innovation, Victoria University, Melbourne. Parks Victoria, Victorian Government Deakin University, Victoria Department of Environment, Land, Water and Planning, Victorian Government

  • This dataset has been superseded by https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/0145df96-3847-474b-8b63-a66f0e03ff54 (Victorian Statewide Marine Habitat Map 2023). The Victorian Benthic Habitats - Western Port Bay (CBICS) is a synthesis of all existing benthic habitat characterisations of the embayment which have been reclassified to conform to the Combined Biotope Classification Scheme (CBiCS). Base layers for the synthesised dataset were sourced from data provided by: Marine and Freshwater Resources Institute, Queenscliff, Victoria Institute for Sustainability and Innovation, Victoria University, Melbourne. Parks Victoria, Victorian Government Deakin University, Victoria Department of Environment, Land, Water and Planning, Victorian Government

  • This dataset has been superseded by https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/0145df96-3847-474b-8b63-a66f0e03ff54 (Victorian Statewide Marine Habitat Map 2023). The Victorian Benthic Habitats - Gippsland Lakes (CBICS) is a synthesis of all existing benthic habitat characterisations of the Gippsland Lakes Region which have been reclassified to conform to the Combined Biotope Classification Scheme (CBiCS). The study area for this layer is defined as Jack Smith Lake in the west to Mallacoota in the east.

  • The National Reef Monitoring Network brings together shallow reef surveys conducted around Australia into a centralised database. The IMOS National Reef Monitoring Network sub-Facility collates, cleans, stores and makes this data rapidly available from contributors including: Reef Life Survey, Parks Australia, Department of Biodiversity, Conservation and Attractions (Western Australia), Department of Environment, Water and Natural Resources (South Australia), Department of Primary Industries (New South Wales), Tasmanian Parks and Wildlife Service and Parks Victoria. The data provided by the National Reef Monitoring Network contributes to establishing and supporting national marine baselines, and assisting with the management of Commonwealth and State marine reserves. The Australian Temperate Reef Network (ATRC) aims to improve biodiversity conservation and the sustainable management of marine resources by coordinating surveys of rocky and coral reefs using scientific methods, with the ultimate goal to improve coastal stewardship. Our activities depend on the skills of marine scientists, experienced and motivated recreational SCUBA divers, partnerships with management agencies and university researchers, and active input from the ATRC partners. ATRC data are freely available to the public for non-profit purposes, so not only managers, but also groups such as local dive clubs or schools may use these data to look at changes over time in their own local reefs. By making data freely available and through public outputs, ATRC aims to raise broader community awareness of the status of Australia?s marine biodiversity and associated conservation issues. This dataset contains data on the cover of macroalage and sessile invertebrates collected in situ at Australian Temperate Reef Collaboration (ATRC) sites. Quadrats are placed at 10 m spacing along each transect line (i.e. 5 per 50 m transect and 20 per contiguous 200 m) by divers skilled in macroalgal identification. The canopy layer, mid-story and substrate are sequentially assessed in each single, 50 -point quadrat.

  • This aim of this project is to identify and map critical habitats for Australian sea lions (Neophoca cinerea) to assess the ecological value of different habitats for sea lions and identify risks to their populations. Through this project we collected animal-borne video, GPS, time-depth and accelerometer/magnetometer data from eight adult female Australian sea lions from Olive Island (n=4) on the western Eyre Peninsula and Seal Bay (n=4) on Kangaroo Island in South Australia. Sea lions were instrumented with animal-borne cameras with integrated accelerometers/magnetometers (CATS Cam, 135 x 96 x 40 mm, 400 g) and satellite-linked GPS loggers with integrated time-depth recorders (SPLASH-10, Wildlife Computers, 100 x 65 x 32 mm, 200 g). Sea lions were sedated and anaesthetised and bio-logging instruments were glued to the pelage on the dorsal midline. Bio-logging instruments were recovered after a single foraging trip (~1-6 days). Populations of the endangered Australian sea lion have declined by >60% over the last 40 years. Australian sea lion populations show a marked uneven distribution in abundance across their range, which suggests that localised risk profiles from threats vary at small spatial scales. Fine scale differences in habitat-use are thought to underpin these differences. However, knowledge of the habitats that are critical to Australian sea lions is poor and their vulnerability to human impacts and threats at the fine-scale is not well understood. The data collected in this project provides fundamental information on critical benthic habitats for Australian sea lions, the differences in foraging behaviour of individual sea lions and their prey preferences. The information collected under this project improves our understanding of threats to sea lion populations and will support future conservation actions to recover the species. EMBARGO Data is currently embargoed until June 2024 and will be made available via this record at that time.