Creation year

2020

65 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 65
  • Data for the project -Investigating the source of the high nitrate, low oxygen layer in the Leeuwin Current- is including in the file. The data include CTD data, ADCP data and Triaxus data from RV Investigator (Voyage IN2019_V03). Also the Sea Surface Height satellite data and CSIRO Atlas of Regional Seas (CARS) data are included as the supporting data. The MATLAB code including the code that calculate the rotated velocity and the transport of the EGC current in upper 300m including volume transport, salinity transport, heat transport and oxygen transport. The nitrate data from Triaxus is uncompleted and will be upload later with the code for calculating the nitrate transport.

  • Voyage IN2019_V04 contributed an additional 29,000 kms2 of seafloor survey data to the Coral Sea knowledge base. From this new bathymetric data individual seamounts have been extracted and have been classified to the Geoscience Australia Geomorphology Classification Scheme. This dataset contains two layers representing the classification layers- 1) Surface (Plain, Slope, Escarpment) and 2) fine scale Geomorphology of the seamount for the Sula Seamount. Ongoing research with this survey data will provide new insights into the detailed geomorphic shape and spatial relationships between adjacent seabed features. This information will be released in future publications to show the potential of how the scale of such seafloor data can be used for predictive habitat modelling when analysed with the biological data overlays.

  • Achived photoquadrats are available from Reef Life Survey (RLS) surveys undertaken before and after a 2016 bleaching event at all major coral reef systems in Australia. This collection was analysed by experts to annotate coral cover to the highest possible taxonomic resolution for ~40,000 images. Specific Australian Marine Parks included are Ashmore Reef, Mermaid Reef and Coral Sea. NOTE: The high resolution coral taxonomic identification data has been assimilated into the larger global RLS photoquadrats data collection, currently held by AODN. This data is intended to be published before the end of 2020. Once published, the subset of annotation data generated by this project will be published as an excerpt attached to this record.

  • Categories      

    This record relates to recreational use patterns from surveys with recreational boaters at 12 locations around Australia across 2019-2020. The collected recreational use patterns are intended to be indicative of use levels for various marine areas. Use patterns were recorded during face-to-face surveys at boat ramps using gridded maps upon which boaters indicated areas they had visited in the last 12 months along with approximate percentages, indicating the relative time spent at each location. Data is supplied as modelled frequency of recreational boating trips (per grid cell per year), based on aggregated boat ramp survey data.

  • Categories    

    Antarctic krill is a key component of Southern Ocean ecosystems and there is significant interest in identifying regions acting as sources for the krill population. We develop a mechanistic model combining thermal and food requirements for krill egg production, with predation pressure post-spawning, to predict regions that could support high larval production (spawning habitat). We optimise our model on regional data using a maximum likelihood approach and then generate circumpolar predictions of spawning habitat quality. The uploaded datasets represent model predictions of seasonal circumpolar spawning habitat quality of Antarctic krill as well as composite data of the circumpolar mean annual number of weeks in which modelled spawning habitat quality is higher than the summer 80th percentile.

  • Latex balloons act like plastic in the ocean: they can travel far from their point of origin on atmospheric and water currents and float at the sea surface where they can be eaten by wildlife that mistake it for food. This study quantified the degradation behaviours of latex balloons in saltwater, freshwater, and industrial compost windrows over 16 weeks. The degradation of latex balloons was quantified with bi-weekly measurements of 1) changes in mass; 2) ultimate tensile strength; and 3) changes in surficial composition of balloons via attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). This study tested whether degradation differed between two balloon colours (blue and white) and whether degradation differed between balloons whose packaging labels included the word "biodegradable" and balloons whose packaging did not contain the word "biodegradable", and were thus labeled as "traditional" balloons. Thus, these data consist of 1) mass measurements; 2) load-extension data used to determine ultimate tensile strength; and 3) ATR-FTIR spectra of latex balloons across the variables balloon type (biodegradable; traditional), colour (blue; white), and week sampled (0-16 weeks). Also included are measurements of balloons that did not undergo treatments and are either straight out of the package ("new") or balloons that were inflated but did not undergo any treatments ("inflated").

  • This project will determine the downburst thunderstorms over Tasmania from the Severe Storms Archive, investigate the atmospheric condition during those downburst thunderstorms and determine the probability of meteorological conditions suitable for downburst thunderstorms over Tasmania during 1990-2019. This project will use the recently completed Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia (BARRA) dataset, which offers more than 100 atmospheric model variables at higher resolution in space and time than existing global reanalyses (Jakob et al. 2017). The hourly temporal resolution, 70 levels vertical resolution and 1.5 km horizontal resolution, which has been developed specifically for Tasmania and other three regions, makes it particularly powerful in comparison to larger scale reanalyses for analysis of short-term phenomena like thunderstorms and their environments in Tasmania.

  • Voyage IN2019_V04 contributed an additional 29,000 kms2 of seafloor survey data to the Coral Sea knowledge base. From this new bathymetric data individual seamounts have been extracted and have been classified to the Geoscience Australia Geomorphology Classification Scheme. This dataset contains two layers representing the classification layers- 1) Surface (Plain, Slope, Escarpment) and 2) fine scale Geomorphology of the seamount for the Cassowary Seamount. Ongoing research with this survey data will provide new insights into the detailed geomorphic shape and spatial relationships between adjacent seabed features. This information will be released in future publications to show the potential of how the scale of such seafloor data can be used for predictive habitat modelling when analysed with the biological data overlays.

  • The prolonged rainfall reduction in South West Western Australia (SWWA) in recent decades has previously been reported to be unprecedented in the past 750 years. This rainfall reduction has reduced the water supply for both residents and agriculture in SWWA. However, the cause of this rainfall reduction is unclear. The relatively short length of the SWWA instrumental rainfall record limits long term studies of SWWA rainfall. In this study, SWWA rainfall is reconstructed based on a statistically significant negative correlation between SWWA rainfall and snowfall at Dome Summit South (DSS), East Antarctica. The 2000-year DSS snow accumulation record is used to reconstruct SWWA rainfall from 22 BCE to 2015 CE. With Cumulative Summation (CUSUM) analysis applied to the rainfall reconstruction, it is found that SWWA rainfall started to reduce around 1971 CE. This prolonged rainfall reduction is unprecedented during the past 750 years, but there have been two prior droughts of similar duration and intensity during the past 2000 years. Applying statistical techniques to compare the rainfall reconstruction with climate model simulations, it is found that greenhouse gases are likely to be the dominant driver of the SWWA rainfall drying trend after 1971 CE. This record describes the Honours Thesis [available for download in 'Online Resources' section of thsi record]. For the data generated by this project, see https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/d7d5ea56-f972-435d-b44b-44fea598150c

  • Categories    

    The AUStralian Tidal Energy (AUSTEn) project was a three year project (2018 - 2020) funded by the Australian Renewable Energy National Agency (agreement number G00902) led by the Australian Maritime College (University of Tasmania), in partnership with CSIRO and University of Queensland. The project had a strong industry support (Atlantis Resources Limited, MAKO Tidal Turbines Ltd, Spiral Energy Corporation Ltd). The aim of the project was to assess the technical and economic feasibility of tidal energy in Australia, based on the best understanding of resource achievable. For further information and output of the project, please visit the AUSTEn project website www.austen.org.au.