Topic
 

elevation

24 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 24
  • Categories  

    This dataset contains polygon extents of all known bathymetry surveys and bathymetry compilations in Australia's marine jurisdiction, including the Australian Antarctic Territory. Each polygon includes metadata identifying attributes, contact details, information on the public availability of data, and (in the case of published data) gridded resolution. The following data sources have been used as inputs: • AusSeabed 'Bathymetry Acquisitions Coverage (Dynamic)' (https://dx.doi.org/10.26186/148613) • AusSeabed 'Bathymetry Compilations Coverage (Dynamic)' (https://dx.doi.org/10.26186/148614) • computed footprints (suffixed by _L0_Coverage) of bathymetry data published through AusSeabed Warehouse Geoserver (https://warehouse.ausseabed.gov.au/geoserver) • computed footprints (suffixed by _BBOX) of bathymetry data published through CSIRO Geoserver (https://www.cmar.csiro.au/geoserver) • manually computed footprints of bathymetry data published through other online repositories: WA Bathymetry Portal (https://dot-wa.maps.arcgis.com/apps/webappviewer/index.html?id=d58dd77d85654783b5fc8c775953c69b), the Australian Ocean Data Network (https://portal.aodn.org.au) and the NSW SEED Portal (https://www.seed.nsw.gov.au) This dataset was generated to enable reporting for Seamap Australia's 'State of Knowledge' functionality (https://seamapaustralia.org/map/), as existing coverage information does not contain metadata on gridding resolution. The dataset is live and will be continually updated as new surveys are conducted and new coverage information becomes available. Gridding resolution will be appended to existing survey extents when historical surveys are published. This dataset is updated regularly (date of last update: 23/05/2025) and will be maintained in perpetuity until such time that the information required for Seamap Australia's 'State of Knowledge' functionality is delivered through an alternative mechanism. Note that a degree of spatial simplification has been conducted to reduce filesize and polygon complexity. All efforts have been made to maintain true survey extent (area-preserving simplification has been used), but polygons may not be representative of the true survey extents, particularly in the case of reported extents from unpublished surveys which cannot be verified.

  • The principle aim of this project was to map the fine-scale spatial distribution of key abalone habitat impacted by urchins in < 25 m water depth using multibeam acoustic imagery. Detailed substrate type (Pavement Reef, Megaclast Reef, Mixed Consolidated Sediment/Reef and Sand), and kelp coverage maps have been produced for the east coast of Tasmania. Large urchin barrens have been predicted and the minimum quantifiable unit of which small incipient barrens can be detected has been identified using this acoustic water column technique. This data provides a snapshot of the 2021 distribution of seafloor habitats and associated vegetation distribution, and will assist in the facilitation of strategic decision making for urchin control and abalone management. Data for download has been split by fishing block (22-24, 27-30). This record describes *FISHING BLOCK 29*. The following data products are available for download, for each fishing block: • 50cm resolution bathymetry • 50cm resolution substrate type (Seamap Australia classification) • bathymetry derivatives (seabed slope, curvature, rugosity, 1 and 2m contours) • water column data - 1m mean signal • water column data - 9m2 raw block statistic • water column data - vegetation likelihood classification See associated records for access to data from other fishing blocks (22, 23, 24, 27, 28, 30).

  • These contours are derived from the Australian Bathymetry and Topography Grid, June 2009 (Geoscience Australia).

  • The principle aim of this project was to map the fine-scale spatial distribution of key abalone habitat impacted by urchins in < 25 m water depth using multibeam acoustic imagery. Detailed substrate type (Pavement Reef, Megaclast Reef, Mixed Consolidated Sediment/Reef and Sand), and kelp coverage maps have been produced for the east coast of Tasmania. Large urchin barrens have been predicted and the minimum quantifiable unit of which small incipient barrens can be detected has been identified using this acoustic water column technique. This data provides a snapshot of the 2021 distribution of seafloor habitats and associated vegetation distribution, and will assist in the facilitation of strategic decision making for urchin control and abalone management. Data for download has been split by fishing block (22-24, 27-30). This record describes *FISHING BLOCK 23*. The following data products are available for download, for each fishing block: • 50cm resolution bathymetry • 50cm resolution substrate type (Seamap Australia classification) • bathymetry derivatives (seabed slope, curvature, rugosity, 1 and 2m contours) • water column data - 1m mean signal • water column data - 9m2 raw block statistic • water column data - vegetation likelihood classification See associated records for access to data from other fishing blocks (22, 24, 27, 28, 29, 30).

  • Categories  

    The principle aim of this project was to map the fine-scale spatial distribution of key abalone habitat impacted by urchins in < 25 m water depth using multibeam acoustic imagery. Detailed substrate type (Pavement Reef, Megaclast Reef, Mixed Consolidated Sediment/Reef and Sand), and kelp coverage maps have been produced for the east coast of Tasmania. Large urchin barrens have been predicted and the minimum quantifiable unit of which small incipient barrens can be detected has been identified using this acoustic water column technique. This data provides a snapshot of the 2021 distribution of seafloor habitats and associated vegetation distribution, and will assist in the facilitation of strategic decision making for urchin control and abalone management. All spatial datasets and derivatives of the have been uploaded onto the Seamap Australia data portal for visualisation as a resource for both managers and scientists for further analysis and study. Data packages have been split by fishing block (22-24, 27-30) and are available to download from each of the 'child' records linked to this record (below).

  • Categories  

    Seamounts, elevated seabed features, and bathymetric highs constitute ecologically significant habitats for various marine species, often associated with unique ecosystems and heightened biodiversity. In Australia, the absence of a comprehensive and spatially accurate inventory of these underwater structures has been a notable gap. Existing broad-scale modelling efforts, including the Parks Australia Natural Values Ecosystems (NVE) map (https://seamapaustralia.org/map/#af207808-481a-4648-93d3-4011f2689461), have predominantly relied on coarse, global datasets. These datasets, characterized by low resolution, often fail to incorporate recent bathymetric data, leading to the omission or incorrect identification of features. This work aimed to address these limitations by developing an improved dataset of raised seabed features, specifically designed to enhance broad-scale modelling efforts like those used in the NVE mapping, and in support of the objectives of NESP Marine and Coastal Hub Project 2.3 (https://www.nespmarinecoastal.edu.au/project/2-3/). Seamount features were extracted from a range of data sources (see 'lineage' section of this record) for the area surrounding the Australian continental margin. These were cross-referenced with GEBCO's 2023 global terrain model (15 arc-second interval grid) and any obviously erroneous features removed. This dataset includes all features located inside the Australian Exclusive Economic Zone (EEZ). Rather than cropping exclusively to this boundary, those features falling outside the Aus EEZ but in the approximate vicinity were also retained for context Existing feature boundaries were redigitised for areas in which more recent high-resolution bathymetry was available, utilising the 'Bathymetry of Australian Marine Parks (2024)' compilation dataset and individual survey datasets available through the AusSeabed data portal (https://portal.ga.gov.au/persona/marine). Where available, fine-scale geomorphic mapping in which seamounts and pinnacles had been classified were extracted and merged with the larger-scale features. If fine-scale mapping disagreed with features classified in the broader-scale datasets, the finer-scale data was prioritised. Where multiple features occurred immediately adjacent to each other, the digitised area represents the "footprint" of the features and as such, a single polygon may encompass multiple peaks. Where features could be uniquely identified (eg by a formal name/title), this attribute is included in the dataset.

  • The principle aim of this project was to map the fine-scale spatial distribution of key abalone habitat impacted by urchins in < 25 m water depth using multibeam acoustic imagery. Detailed substrate type (Pavement Reef, Megaclast Reef, Mixed Consolidated Sediment/Reef and Sand), and kelp coverage maps have been produced for the east coast of Tasmania. Large urchin barrens have been predicted and the minimum quantifiable unit of which small incipient barrens can be detected has been identified using this acoustic water column technique. This data provides a snapshot of the 2021 distribution of seafloor habitats and associated vegetation distribution, and will assist in the facilitation of strategic decision making for urchin control and abalone management. Data for download has been split by fishing block (22-24, 27-30). This record describes *FISHING BLOCK 30*. The following data products are available for download, for each fishing block: • 50cm resolution bathymetry • 50cm resolution substrate type (Seamap Australia classification) • bathymetry derivatives (seabed slope, curvature, rugosity, 1 and 2m contours) • water column data - 1m mean signal • water column data - 9m2 raw block statistic • water column data - vegetation likelihood classification See associated records for access to data from other fishing blocks (22, 23, 24, 27, 28, 29).

  • IMAS/CSIRO undertook a multibeam mapping campaign in eastern and Southern Tasmania to map shelf waters of the Freycinet, Huon and Tasman Fracture Marine Parks and several reference areas for the Tasman Fracture Park, including waters around Pedra Brancha and South-west Cape. The dataset includes a post-processed transit along the mid-shelf i=of Western Tasmania. The dataset includes raw mutibeam outputs and post-processed data, including Caris Files, xyz data and geotiffs. A data report for this has been produced by CSIRO. The study was intended to increase knowledge of the distribution of habitats within the SE Australian Australian Marine Park network, and at nearby reference areas with similar habitat. This information is required to underpin subsequent biological monitoring of key habitats within the AMP network, and to contrast the observations within parks with nearby fished locations to determine the extent that changes in biological communities are driven by natural vs anthropogenic pressures.

  • The CSIRO’s Oceans & Atmosphere Shallow Survey Internal Facility (SSIF) was contracted by the Institute for Marine and Antarctic Studies (IMAS) of the University of Tasmania (UTAS) in collaboration with Parks Australia, to undertake a hydrographic survey of the Boags Commonwealth Marine Reserve in the southwestern Bass Strait. This site was surveyed in conjunction with other smaller sites for Petuna Aquaculture, as part of a broader survey campaign. All of the sites covered in this campaign are located in the vicinity of the Hunter Group of Islands, off the north-western coast of Tasmania.

  • The principle aim of this project was to map the fine-scale spatial distribution of key abalone habitat impacted by urchins in < 25 m water depth using multibeam acoustic imagery. Detailed substrate type (Pavement Reef, Megaclast Reef, Mixed Consolidated Sediment/Reef and Sand), and kelp coverage maps have been produced for the east coast of Tasmania. Large urchin barrens have been predicted and the minimum quantifiable unit of which small incipient barrens can be detected has been identified using this acoustic water column technique. This data provides a snapshot of the 2021 distribution of seafloor habitats and associated vegetation distribution, and will assist in the facilitation of strategic decision making for urchin control and abalone management. Data for download has been split by fishing block (22-24, 27-30). This record describes *FISHING BLOCK 22*. The following data products are available for download, for each fishing block: • 50cm resolution bathymetry • 50cm resolution substrate type (Seamap Australia classification) • bathymetry derivatives (seabed slope, curvature, rugosity, 1 and 2m contours) • water column data - 1m mean signal • water column data - 9m2 raw block statistic • water column data - vegetation likelihood classification See associated records for access to data from other fishing blocks (23, 24, 27, 28, 29, 30).