Creation year

2016

87 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 87
  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project A4 - "The status of human-shark interactions and initiatives to mitigate risk in Australia". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Considerable political, public and media attention has recently been focussed on human-shark interactions, specifically surrounding shark attack and ways to mitigate this risk. Finding the most appropriate policy balance between conservation of sharks, maximising public safety and understanding the broader social and economic ramifications/drivers for doing so is a continuing challenge for Government. This project will review the status of human-shark interactions in Australia, provide a synthesis of current initiatives to reduce risk, review recent international efforts to address these issues and identify knowledge gaps to provide an informed base for determining the most appropriate future research and policy support. The project will develop a background document that: • Provides a synthesis of the current state of knowledge of shark-human interactions in Australia, focussing specifically on species such as white sharks, bull sharks and tiger sharks • Identifies what initiatives are currently underway nationally to address human-shark interactions including the status of current research as well as current management and policy initiatives. • Identifies technological developments within Australia and internationally in this space • Identifies lessons and experiences from these initiatives • Identifies issues and knowledge gaps • Provides guidance to the Department regarding further investment that is cognisant of State Government initiatives and requirements and ensure a coordinated national knowledge base for addressing these issues

  • This dataset describes the predicted occurrence of juvenile sharks around Northwest Australia, mapped over a 0.01 degree spatial grid. Juvenile sharks were mapped at two taxonomic levels: order by including all juvenile sharks sampled (all juveniles) and species by considering the three most abundant species sampled separately (grey reef (Carcharhinus amblyrhynchos), sandbar (Carcharhinus plumbeus), and whitetip reef (Triaenodon obesus) sharks). The data cover the period 2003-2013 and are derived from an analysis of count data derived from baited remote underwater videos deployed through various sampling programs. Further detail can be found in the following peer-reviewed publication: Oh, BZL, Sequeira, AMM, Meekan, MG, Ruppert, JLW and Meeuwig, JJ (2017), Predicting occurrence of juvenile shark habitat to improve conservation planning. Conservation Biology, 31: 635–645. doi:10.1111/cobi.12868 Below is a full list of species, with contributions to the total counted (%): -------------------------------------------------- Silvertip shark / Carcharhinus albimarginatus – 4.14% Grey reef shark / Carcharhinus amblyrhynchos – 28.06% Bronze whaler / Carcharhinus brachyurus – 0.18% Galapagos shark / Carcharhinus galapagensis – 0.09% Bull shark / Carcharhinus leucas – 0.18% Common-Australian blacktip shark / Carcharhinus limbatus-C.tilstoni – 1.38% Blacktip reef shark / Carcharhinus melanopterus – 1.56% Sandbar shark / Carcharhinus plumbeus – 4.78% Spot-tail shark / Carcharhinus sorrah – 0.18% Tiger shark / Galeocerdo cuvier – 2.39% Sliteye-Sharpnose shark / Loxodon macrorhinus-Rhizoprionodon spp. – 6.35% Lemon shark / Negaprion acutidens – 1.01% Whitetip reef shark / Triaenodon obesus – 18.95% Tawny shark / Nebrius ferrugineus – 0.83% Grey carpetshark / Chiloscyllium punctatum – 1.38% Taselled wobbegong / Eucrossorhinus dasypogon – 0.09% Scalloped hammerhead / Sphyrna lewini – 0.46% Great hammerhead / Sphyrna mokarran – 3.86% Zebra shark / Stegostoma fasciatum – 0.83% Sicklefin houndshark / Hemitriakis falcata – 1.01% Grey gummy shark / Mustelus ravidus – 0.28% Archived BRUVS video files used in this study are the intellectual property of multiple institutions and industry partners and are not published in this record. See credits for further information.

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project B4 - "Underpinning the repair and conservation of Australia’s threatened coastal-marine habitats". For specific data outputs from this project, please see child records associated with this metadata. -------------------- The primary objective of this project is to provide essential research to underpin restoration efforts to increase the success and efficiency of shellfish and saltmarsh repair. The secondary objective is to quantify clear easily understood benefits of repair to further increase groundswell, Indigenous and interest group support for repair efforts. For Phase 2 this involves: Shellfish reefs 1. Providing critical research to underpin the success of companion works investments into Sydney rock oyster (Saccostrea glomerata) restoration in Qld and NSW 2. Ongoing engagement with Indigenous groups, focused around especially SEQ and NSW to match the emphasis on Sydney rock oyster; 3. Through the Nature Conservancy, linking to shellfish restoration works in Port Phillip Bay (Vic), St Vincent’s Gulf (SA) and Oyster Harbour (WA) so that a National Business Case complete with examples of successes to date can be developed; 4. Underpinning this succinct business case with an information base for any follow-on activities such as assessment of shellfish reefs as an endangered community. Salt marshes 1. Estimating the benefits of salt marsh repair for an easily publicly understood indicator - prawn species. 2. Undertaking this work in NSW and Qld in parallel with proposed repair works so that very concrete case studies are available to demonstrate the benefits of repair. Planned Outputs Shellfish reef project outputs: • A scientific paper published in an eminent, peer-reviewed journal describing the ecology and biodiversity of shellfish reefs and biodiversity comparison against other marine habitats; • A scientific paper published in an eminent, peer-reviewed journal which identifies trajectories of change from past baselines to current condition and develops achievable targets for repair; • News stories, web articles, social media, brochures and oral presentations at national/international conferences, which communicate the key research findings to coastal stakeholders such as fishers, divers, NRM groups and government agencies; • News stories, web articles and social media which communicate the importance of shellfish reefs and shellfish food sources to Indigenous Australians; • Summary of community benefit and business propositions for coastal wetland repair expanding on the vision of a rejuvenated coastal ecology and written at the level required for input to various investors, agencies and public policy; • Updates at the end of 2016 as part of stakeholder engagement and continued communication. Salt marsh prawn productivity outputs: • A scientific paper published in an eminent, peer-reviewed journal quantifying and contrasting prawn productivity in healthy and degraded salt marsh communities in tropical and temperate environments; • Publicly accessible communication resources (brochures, social media, media releases and webpages) which articulate simply the prawn productivity values of salt marshes and links this to the need for the protection, conservation and restoration of degraded salt marsh communities.

  • The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including the Abrolhos Islands, a group of 122 limestone outcrops surrounded by fringing reed ca. 60km west from the city of Geraldton. The Abrolhos research location is the most northerly of the Marine Futures sampling sites, selected due to the unique mixture of tropical coral reef habitats, and temperate reef and seagrass communities.The hydroacoustics data were processed to construct full coverage maps of bathymetry and textural information.

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project A9 - "Grey Nurse Shark CK-MR Population Estimate – East Coast". For specific data outputs from this project, please see child records associated with this metadata. -------------------- A review of the 2002 National Recovery Plan for Grey Nurse Shark (DEWHA 2009) concluded it was not possible to determine if the east coast population had shown any signs of recovery (DoE 2014); recommending a new recovery plan be developed for this species. A primary objective of the new recovery plan (DoE 2014) is to improve knowledge of GNS population status. This will require a robust estimate of population size and trend – something that has not been provided to date. This project will use genetic SNP data to inform close kin-mark recapture analysis to estimate population size and trend, and provide guidance on future monitoring strategies for the east coast population of grey nurse shark. Planned Outputs • Tools to refine and integrate CK-MR and species demographic data for population assessments of a key threatened species at a national scale (combining knowledge developed under this project combined with similar techniques being applied under NESP to euryhaline sharks and white sharks). • A national estimate of (census) population size and trend for the eastern Australian population of grey nurse shark will be developed to fulfil the highest priority actions of the National Recovery Plan. • Identify national strategies to guide future monitoring of grey nurse shark populations. • The project will provide peer-reviewed additions to the scientific literature that will add to the science-support for the development and implementation of policies to support the ecologically sustainable management of Australia’s marine environment.

  • Time Series video to support Project C3 of the Marine Biodiversity Hub NESP programme. The video illustrates coastal change at the Murray Mouth and Lower Lakes, SA using 104 Landsat observations from within the Australian Geoscience Data Cube (AGDC) from 1988-2013.

  • The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including Jurien Bay. The Jurien Bay marine environment is highly diverse, and is home to a wide variety of species, including sea lions and sea birds on the many offshore islands. Limestone reef and seagrass habitats in the area support a diverse fish and invertebrate fauna, and a local crayfishing industry is based around the Western Rock Lobster (Panulirus cygnus).

  • The threatened status of shellfish reefs has been well established globally (e.g Beck et al 2011) however the ecological consequences of these losses is still largely unknown. In Australia, shellfish reefs are one of the most imperilled marine habitat types (Gillies et al 2018), due to historical overharvest and widespread eutrophication of coastal waters through the use of fertilizers, livestock and human waste. Marine bivalves are important ecosystem engineers providing habitat, shelter and a food source for other species in benthic soft-sediment environments. In addition, filter-feeding bivalves link benthic and pelagic components of ecosystems through filtration and excretion. Through their filter feeding, they produce large amounts of faeces (digested seston) and pseudofaeces (rejected particles bound up in mucus) which are deposited on the benthos. This process brings energy and nutrients from the pelagic system to the benthic system (bentho-pelagic coupling). The removal of large quantities of seston can serve an important ecosystem function by improving water quality and clarity. The filtration of water performed by bivalves has been demonstrated to reduce water turbidity, improving light penetration and thereby enhancing growing conditions for seagrasses (Wall et al 2008). In systems where healthy populations of bivalves remain, they can filter a volume equivalent or larger than the entire estuary volume within the residence time of the water (zu Ermgassen et al 2013). While such densities of oysters are rare today, this highlights the critical ecosystem services that are lost when oyster reefs decline. Furthermore, it demonstrates the potential functions that can be regained through oyster reef restoration. Given the increasing awareness of the decline of these ecosystems, interest in restoration efforts to restore critical ecosystem functions has been growing. However, conservation and restoration decision making is underpinned by reliable quantification of relevant ecosystem services (zu Ermgassen et al 2016). For example, there are plans to restore some of the natural oyster reefs of Sydney Rock Oyster (Saccostrea glomerata) in Port Stephens, New South Wales. One of the main drivers motivating this restoration project is restoring lost ecosystem services. The filtration rates of Australian oysters has been demonstrated in aquarium studies using filtered water augmented with algae, yet little is known about filtration and biodeposition rates of oysters using raw seawater. In this study, we provide the first evaluation of the filtration and biodeposition rate of four species of bivalves using raw seawater, providing a proxy for natural biodeposition rates. As such, this study provides a first indication of the filtration/nutrient cycling function that may be restored following oyster restoration efforts.

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project D1 - "Ecosystem understanding to support sustainable use, management and monitoring of marine assets in the North and North-west regions". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Effective management of marine assets requires an understanding of ecosystems and the processes that influence patterns of biodiversity. Focusing on the North and North-west regions, this project will leverage previous research to improve ecosystem understanding through a synthesis of existing information and by making testable predictions about the character and extent of conservation values, including for key ecological features (KEFs) and Commonwealth Marine Reserves. End-users and stakeholders will benefit from improved regional descriptions of marine ecosystems and uncertainty statements. In turn, this will inform prioritisation of future investments in monitoring marine ecosystems and State of the Environment reporting. Planned Outputs • A report on the synthesis (based on collations completed in 2015) of datasets and models for the North and NW identifying areas of greatest information coverage, gaps and themed to CMRs and KEFs in those regions. This report will also describe key spatial patterns in biodiversity (benthic and pelagic) and associations between benthic environments, fish and megafauna and large scale processes (e.g. oceanography). • Predictions and related products (maps) of the spatial distribution of biodiversity across the Oceanic Shoals CMR that encompasses benthic habitat, pelagic and demersal fish and megafauna communities. This will provide an example/test case at the National Prioritisation Workshop of how confidently predictive modelling can be used to describe assets and values in data poor areas to inform management and monitoring. • An updated conceptual model of ecosystem processes (benthic and pelagic) within the Oceanic Shoals CMR based on extension of modelling into pelagics. • A review of existing knowledge of the Ancient Coastline KEF. • A qualitative model of Glomar Shoal KEF (to be confirmed in consultation with DOE). • Communication products that capture activities and general interest stories of scientific results disseminated through NW Atlas social media links. • Upload of new relevant spatial data layers in NW Atlas for management and planning, and engagement with end users to maximize uptake of the NW Atlas products.

  • This database contains sampling effort, catch records, biological data, and water quality data for sampling and catches of elasmobranchs in northern Australian rivers, estuaries and coasts undertaken under the National Environmental Research Program (NERP) Marine Biodiversity Hub Project 2.4 'Supporting Management of Listed and Rare Species'. and the National Environmental Science Program (NESP) Marine Biodiversity Hub Project A1 'Northern Australian Hotspots for the Recovery of Threatened Euryhaline Elasmobranchs'. Surveys using gillnets and rod-and-line were undertaken in the Top End region of the Northern Territory and the Kimberley region of Western Australia. Selected animals were tagged for movement ecology, habitat use and mortality estimates (acoustic telemetry), and tissue samples were collected from all fish for molecular analyses (population genetics and close-kin mark-recapture).