Creation year

2016

87 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 87
  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project A2 - "Quantification of national ship strike risk". This project has been superseded by NESP Marine Biodiversity Hub Project C5 - "Quantification of risk from shipping to large marine fauna across Australia" (see link in Distribution and On-Line Resources section of this record). -------------------- Given Australian coastal development, and associated increases in shipping, ship collisions with marine fauna (specifically marine mammals and turtles) is of increasing concern. Tools and research are needed to spatially quantify the risk of ship strike to help develop management strategies. This work will use shipping density/speed data from the recent past, in parallel with species distribution/habitat models, to produce relative risk maps that can be used to identify areas and times where there is co-occurrence of at-risk marine fauna and shipping. From these maps, strategies (such as speed reduction zones/times) could be implemented to minimise the impact of vessel strike on marine fauna. Planned Outputs • Initial scoping report of ship strike risk, summarising what is currently known on at-risk species, the data available, shipping size/type data needed and providing recommendations on what species to investigate ranked from easiest to most difficult; • Identification of data deficiencies; • Full Australia-wide fine-scale shipping density and average speed maps for 2012 – present; • A suite of distribution information/maps for the various species investigated; • Risk map for selected species. With individual species, results delivered during the life of the project. The risk maps will range from full fine-scale maps when data is present, to coarse-scale ‘regions of concern’ for species where distribution data is limited to approximate extent.

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project C3 - "Change detection and monitoring of key marine and coastal environments – application of the Australian Geoscience Data Cube". For specific data outputs from this project, please see child records associated with this metadata. -------------------- This project aims at leveraging the extensive time-series of earth observation image data in the Australian Geoscience Data Cube (AGDC) by developing change detection algorithms to analyse key environmental parameters in the coastal and marine zone. Spatial information produced by this project can inform management decisions, and assist in evaluating management action outcomes, by providing a quantifiable measure of historical change and ongoing monitoring and change detection capabilities. In Phase 1 of this project we aim to demonstrate the capability of using the AGDC through the development of an inter-tidal zone change detection algorithm and data set, with a view to developing and implementing an expanded range of stakeholder targeted algorithms to inform decision making processes in Phase 2. Planned Outputs • Progress Report • Demonstrator summary Report • Data Products (GIS maps and data, delivered from the GA website as a web service) • Marine Biodiversity Hub article • Pesentation at the Australian Marine Science Association Conference.

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project D1 - "Ecosystem understanding to support sustainable use, management and monitoring of marine assets in the North and North-west regions". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Effective management of marine assets requires an understanding of ecosystems and the processes that influence patterns of biodiversity. Focusing on the North and North-west regions, this project will leverage previous research to improve ecosystem understanding through a synthesis of existing information and by making testable predictions about the character and extent of conservation values, including for key ecological features (KEFs) and Commonwealth Marine Reserves. End-users and stakeholders will benefit from improved regional descriptions of marine ecosystems and uncertainty statements. In turn, this will inform prioritisation of future investments in monitoring marine ecosystems and State of the Environment reporting. Planned Outputs • A report on the synthesis (based on collations completed in 2015) of datasets and models for the North and NW identifying areas of greatest information coverage, gaps and themed to CMRs and KEFs in those regions. This report will also describe key spatial patterns in biodiversity (benthic and pelagic) and associations between benthic environments, fish and megafauna and large scale processes (e.g. oceanography). • Predictions and related products (maps) of the spatial distribution of biodiversity across the Oceanic Shoals CMR that encompasses benthic habitat, pelagic and demersal fish and megafauna communities. This will provide an example/test case at the National Prioritisation Workshop of how confidently predictive modelling can be used to describe assets and values in data poor areas to inform management and monitoring. • An updated conceptual model of ecosystem processes (benthic and pelagic) within the Oceanic Shoals CMR based on extension of modelling into pelagics. • A review of existing knowledge of the Ancient Coastline KEF. • A qualitative model of Glomar Shoal KEF (to be confirmed in consultation with DOE). • Communication products that capture activities and general interest stories of scientific results disseminated through NW Atlas social media links. • Upload of new relevant spatial data layers in NW Atlas for management and planning, and engagement with end users to maximize uptake of the NW Atlas products.

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project B1 - "Road testing decision support tools via case study applications". No data outputs are expected for this project. -------------------- This project will deploy advances in decision-support to assist Commonwealth Marine Reserve managers progress the implementation of evidence-based adaptive management throughout the reserve estate. Two case studies will treat selected decision problems in detail. Specifically: • The identification of decision thresholds that may trigger a change in management, framed within Parks Australia’s performance monitoring template. • The prioritisation of information acquisition through research and monitoring. The two case studies involve coherent integration of ecological models, social and organisational value judgements, and economic analysis. Planned Outputs • Progress reports describing interim outcomes of the (a) decision thresholds and (b) research and monitoring prioritisation case studies. • At least two publications in high impact peer-reviewed journals. • Two final reports describing outcomes of the (a) decision thresholds and (b) research and monitoring prioritisation case studies. • At least two publications in high impact peer-reviewed journals. • Training and associated materials

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project B4 - "Underpinning the repair and conservation of Australia’s threatened coastal-marine habitats". For specific data outputs from this project, please see child records associated with this metadata. -------------------- The primary objective of this project is to provide essential research to underpin restoration efforts to increase the success and efficiency of shellfish and saltmarsh repair. The secondary objective is to quantify clear easily understood benefits of repair to further increase groundswell, Indigenous and interest group support for repair efforts. For Phase 2 this involves: Shellfish reefs 1. Providing critical research to underpin the success of companion works investments into Sydney rock oyster (Saccostrea glomerata) restoration in Qld and NSW 2. Ongoing engagement with Indigenous groups, focused around especially SEQ and NSW to match the emphasis on Sydney rock oyster; 3. Through the Nature Conservancy, linking to shellfish restoration works in Port Phillip Bay (Vic), St Vincent’s Gulf (SA) and Oyster Harbour (WA) so that a National Business Case complete with examples of successes to date can be developed; 4. Underpinning this succinct business case with an information base for any follow-on activities such as assessment of shellfish reefs as an endangered community. Salt marshes 1. Estimating the benefits of salt marsh repair for an easily publicly understood indicator - prawn species. 2. Undertaking this work in NSW and Qld in parallel with proposed repair works so that very concrete case studies are available to demonstrate the benefits of repair. Planned Outputs Shellfish reef project outputs: • A scientific paper published in an eminent, peer-reviewed journal describing the ecology and biodiversity of shellfish reefs and biodiversity comparison against other marine habitats; • A scientific paper published in an eminent, peer-reviewed journal which identifies trajectories of change from past baselines to current condition and develops achievable targets for repair; • News stories, web articles, social media, brochures and oral presentations at national/international conferences, which communicate the key research findings to coastal stakeholders such as fishers, divers, NRM groups and government agencies; • News stories, web articles and social media which communicate the importance of shellfish reefs and shellfish food sources to Indigenous Australians; • Summary of community benefit and business propositions for coastal wetland repair expanding on the vision of a rejuvenated coastal ecology and written at the level required for input to various investors, agencies and public policy; • Updates at the end of 2016 as part of stakeholder engagement and continued communication. Salt marsh prawn productivity outputs: • A scientific paper published in an eminent, peer-reviewed journal quantifying and contrasting prawn productivity in healthy and degraded salt marsh communities in tropical and temperate environments; • Publicly accessible communication resources (brochures, social media, media releases and webpages) which articulate simply the prawn productivity values of salt marshes and links this to the need for the protection, conservation and restoration of degraded salt marsh communities.

  • The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including the Abrolhos Islands, a group of 122 limestone outcrops surrounded by fringing reed ca. 60km west from the city of Geraldton. The Abrolhos research location is the most northerly of the Marine Futures sampling sites, selected due to the unique mixture of tropical coral reef habitats, and temperate reef and seagrass communities.The hydroacoustics data were processed to construct full coverage maps of bathymetry and textural information.

  • The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including Mount Gardner, a site located just off Two People’s Bay, 30km east of the town of Albany. The area is host to a number of human uses, including recreational and commercial fishing, diving, surfing, recreational boat use and shipping and mining. The marine environment at this location is different to the other three study locations on the south coast, in that it encompasses the protected Two Peoples Bay with seagrass and invertebrate communities and the more exposed rocky and macroalgal reefs around the Mt Gardner peninsula itself.

  • The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including Mount Gardner, a site located just off Two People’s Bay, 30km east of the town of Albany. The area is host to a number of human uses, including recreational and commercial fishing, diving, surfing, recreational boat use and shipping and mining. The marine environment at this location is different to the other three study locations on the south coast, in that it encompasses the protected Two Peoples Bay with seagrass and invertebrate communities and the more exposed rocky and macroalgal reefs around the Mt Gardner peninsula itself.

  • This dataset describes the relative abundance of an assemblage of commercially exploited demersal fishes in northwestern Australia, mapped over a 30 arc-minute (0.5 degree) spatial grid. The data cover the period 1997-2006 and are derived from an analysis of commercial landings available through the Sea Around Us Project (http://www.seaaroundus.org/). Further methodological details can be found in the following peer-reviewed publication, which applies the same analysis to a suite of mobile pelagic species: Bouchet PJ, Meeuwig JJ, Huang Z, Letessier TB, Nichol SL, Caley MJ, Watson RA. 2016. Continental-scale hotspots of pelagic fish abundance inferred from commercial catch records. Global Ecology and Biogeography. Below is a full list of species/genera/families considered, with their respective contributions to the total catch (%): -------------------------------------------------- Mustelus -- 26.1948% Platycephalidae -- 23.3191% Seriolella -- 10.8968% Sillaginidae -- 9.4242% Genypterus blacodes -- 5.8347% Pristiophorus -- 4.4934% Tetraodontidae -- 4.3235% Nemadactylus -- 4.2784% Squatinidae -- 3.6071% Mugilidae -- 3.181% Sparidae -- 2.7037% Chelidonichthys kumu -- 0.7146% Rajiformes -- 0.4497% Pterygotrigla polyommata -- 0.3911% Scorpaenidae -- 0.1292% Callorhinchus milii -- 0.0367% Rhombosolea -- 0.0046% Pleuronectiformes -- 0.0034% Leiognathidae -- 0.003% Lates calcarifer -- 0.0029% Ariidae -- 0.0025% Sciaenidae -- 0.0017% Nemipteridae -- 0.0014% Nemipterus -- 0.0014% Upeneus -- 0.001% Data will be attached to this record once analyses are completed, est. December 2016.

  • Coral community transect data collected concurrent with coral disease surveys in in the vicinity of Hoga Island in the Wakatobi Marine National Park, Sulawesi, Indonesia. Three replicate 20 m transects were collected by divers in each of reef flat, crest and slope habitats in 2005 (four sites, point intersect transect data), 2007, 2010 and 2011 (all six sites, line intersect transect data). For further detail see: Haapkylä, J., A. S. Seymour, J. Trebilco, and D. Smith. 2007. Coral disease prevalence and coral health in the Wakatobi Marine Park, south-east Sulawesi, Indonesia. Journal of the Marine Biological Association of the UK 87:403. Haapkylä, J., R. Unsworth, A. Seymour, J. Melbourne-Thomas, M. Flavell, B. Willis, and D. Smith. 2009. Spatio-temporal coral disease dynamics in the Wakatobi Marine National Park, South-East Sulawesi, Indonesia. Diseases of Aquatic Organisms 87:105–115. Haapkylä, J., J. Melbourne-Thomas, and M. Flavell. 2015. The association between coral communities and disease assemblages in the Wakatobi Marine National Park, south-eastern Sulawesi, Indonesia. Marine and Freshwater Research.