2017
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
Records of collisions between vessels and whales in Australian waters between 1872 and 2015 as described in the paper Peel, D., Smith, J. N., & Childerhouse, S. (2018). Vessel Strike of Whales in Australia: The Challenges of Analysis of Historical Incident Data. Frontiers in Marine Science, 5, 69. This record has been created to facilitate access to the original data collection at https://doi.org/10.25919/5be5086a6fda1
-
This database contains acoustic telemetry data for euryhaline elasmobranchs in northern Australian rivers. Data was collected under the National Environmental Research Program (NERP) Marine Biodiversity Hub Project 2.4 'Supporting Management of Listed and Rare Species', and the National Environmental Science Program (NESP) Marine Biodiversity Hub Project A1 'Northern Australian Hotspots for the Recovery of Threatened Euryhaline Elasmobranchs'. An acoustic receiver array was deployed in the Adelaide River, and another in the Alligator Rivers (primarily the South Alligator River) to monitor the movements, habitat use and natural mortality of threatened river sharks (Glyphis species) and sawfishes (Pristis species). Receiver deployment data is available through the IMOS Animal Tracking Facility database (visit https://animaltracking.aodn.org.au/receivers/deployment and search for project 'NESP Northern Australian hotspots for the recovery of threatened euryhaline species'). Detection data is currently embargoed until end 2023.
-
This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Emerging Priorities project - "Assessing the effectiveness of waste management in reducing the levels of plastics entering Australia’s marine environment". For specific data outputs from this project, please see child records associated with this metadata. -------------------- This project will contribute to better understanding where to target investment in abatement measures by providing information on the extent of the leakage of plastic materials into the marine environment, where the greatest leakages are and in what quantity, and what form they take (e.g. plastic bags, packaging, takeaway containers). It will also identify what type of facilities, policies and outreach strategies governments (state and local) have in place and undertake an assessment of their effectiveness. The objectives of this project are to: 1. Investigate the relationship between plastic debris in the marine environment and litter data from nearby sites; 2. Determine whether there are identifiable pathways through which plastic debris moves into the marine environment; 3. Investigate whether particular investments in facilities, policies or outreach are effective in reducing plastic debris on coasts and in oceans and where investment should be directed in the future; and 4. Initiate an internal department workshop to socialise the outcomes of the research across the relevant arms of the department, including staff involved in approvals, waste, protected species, and parks, and explore the utility of existing data to address the Department’s needs, including those arising from the TAP and the Senate Inquiry. Planned Outputs • A written report and plain English summary for use by state, territory and local governments, which: - Synthesises existing knowledge on the relationship between debris in the marine environment and litter data from nearby sites, the types of litter and the pathways through which litter moves into the marine environment. - Summarises existing coastal debris/litter survey methodologies with discussion of applications of each. • A list of the activities and programs associated with plastic waste reduction (including facilities, policies and outreach), • A publically accessible analysis and summary of different survey methods aiming to reduce debris inputs to the marine environment. - The cost of the activities and programs - Ranking of activities and programs regarding their effectiveness in reducing plastic waste in the marine environment. • Conclusions on where marine debris hot spots are in Australia’s marine environment and effective mitigation strategies. • Recommendations on where more information (scientific, policy, infrastructure, community engagement) is required to obtain a better understanding of the problem and possible solutions. This may include identifying knowledge gaps and needs for further analysis
-
This dataset provides predictions of pelagic vertebrate species richness and relative abundance throughout sub-areas of the Oceanic Shoals Australian Marine Park (AMP). Predictive models were constructed from in situ observations made using mid-water stereo-BRUVS (baited remote underwater video systems) deployed at 116 sites within three sampling areas in the western half of the AMP. Sampling took place in September and October 2012 aboard the RV Solander (survey GA0339/SOL5650), as part of an expedition supported by the National Environmental Research Programme's Marine Biodiversity Hub (Theme 3). Expedition partners included the Australian Institute of Marine Science (AIMS), Geoscience Australia (GA), The Centre for Marine Futures at the University of Western Australia (UWA), and the Northern Territory Museum. Full methodological details can be found in the following peer-reviewed publication: Bouchet, P.J., Letessier, T.B., Caley, M.J., Nichol, S.L., Hemmi, J.M., Meeuwig, J. (2020). Submerged carbonate banks aggregate pelagic megafauna in offshore tropical Australia. Front. Mar. Sci. doi: 10.3389/fmars.2020.00530
-
This meta data describes the raw output of the SES DEB-IBM built in NetLogo (version 6.0.1, March 2017; available from http://modelingcommons.org/browse/one_model/5348). The raw output consists of .csv files from several model runs. The detailed explanation of the model workings and background are published in Goedegebuure et al. (2018, PLoS ONE; Modelling southern elephant seals Mirounga leonina using an individual-based model coupled with a dynamic energy budget; DOI: 10.1371/journal.pone.0194950). In short: we developed an individual-based model which is coupled with a dynamic energy budget (a DEB-IBM) for southern elephant seals to demonstrate a method for detailed representation of marine mammals. We aimed to develop a model which could i) simulate energy use and life histories, as well as breeding traits of southern elephant seals in an emergent manner, ii) project a stable population over time, and iii) have realistic population dynamics and structure based on emergent life history features (such as age at first breeding, lifespan, fecundity and (yearling) survival). We evaluated the model's ability to represent a stable population over long time periods (> 10 generations), including the sensitivity of the emergent properties to variations in key parameters. The model was developed using life history data of female southern elephant seals from Macquarie Island and follows individuals from birth to death. The information collected in the raw output are the same for the baseline model (stable, and with standard parameters), and the modified models to test for 1) low, and 2) high food availability, 3) low, and 4) high weaning thresholds (energetic level at which pups transition to juveniles), 5) low, and 6) high puberty thresholds (energetic level at which juveniles transition to physically mature adults). As well as recording the parameter values as set in the model, each .csv file records: 1) run number (usually 1-10) 2) step (time step, days) 3) min age at first breeding (years) 4) min age of adult 5) mean age of adult 6) mean age of juvenile 7) max age of individuals 8) max number of pups per female 9) fecundity 10) max size of individuals 11) mean size of adults 12) mean size of juveniles 13) total count of modelled population 14) total count of embryos 15) total count of pups 16) total count of yearlings 17) total count of juveniles (includes yearlings) 18) total count of adults 19) mean food availability of independent individuals (those not reliant on their mother) that are not fasting/moulting 20) carrying capacity (or expected equilibrium) 21) seed NB. NetLogo calls individuals within the model turtles - thus output will mention turtles. Stages are as follows 0 = foetus, 1 = pup, 2 = juvenile, 3 = adult. Status are as follows, 0 = dependent on mother, 1 = fasting, 2 = foraging.
-
The dataset indicates the seasonal primary productivity hotspots of ocean surface waters. They are derived from MODIS (aqua) images using NASA's SeaDAS image processing software. The monthly chlorophyll a images between July 2002 and August 2014 are used to identify the primary productivity hotspots of the four austral seasons: winter (June, July, and August), spring (September, October and November), summer (December, January and February) and autumn (March, April and May). The extent of the dataset covers the entire Australian EEZ and surrounding waters (including the southern ocean). The value (between 0 and 1.0) of the dataset represents the likelihood of the location being a primary productivity hotspot. This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.
-
The ETAS (Eastern TASmania) model is a high-resolution (~2 km in the horizontal) ocean model for eastern Tasmania, providing three-dimensional estimates of monthly mean temperature, salinity, and circulation over the 1993-2016 period. This dataset consists of temperature, salinity, meridional (N-S), zonal (E-W), vertical, along- and cross-shore currents, density, sea level and net surface heat flux organised into yearly files. A MATLAB script to extract portions of the data is available here: https://github.com/ecjoliver/extractETAS
-
The intertidal area was derived by aggregating and dissolving the boundaries of the 1 degree S57 file series for the Australian continental shelf and Lord Howe Island shelf (200 m) depicting depth area features.
-
This dataset has been superseded by https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/0145df96-3847-474b-8b63-a66f0e03ff54 (Victorian Statewide Marine Habitat Map 2023). The Victorian Benthic Habitats - Port Phillip Bay (CBICS) is a synthesis of all existing benthic habitat characterisations of the embayment which have been reclassified to conform to the Combined Biotope Classification Scheme (CBiCS). Base information for the synthesised dataset were sourced from data provided by: Marine and Freshwater Resources Institute, Queenscliff, Victoria Institute for Sustainability and Innovation, Victoria University, Melbourne. Parks Victoria, Victorian Government Deakin University, Victoria Department of Environment, Land, Water and Planning, Victorian Government
-
The state boundary area of the Australia continental shelf (including Lord Howe Island). The coastline is at Lowest Astronomical Tide (LAT) and the shelf break is defined by the 200 m isobath taken from Geoscience Australia's GA 2009 bathymetric dataset.