2017
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Emerging Priorities project - "Assessing the effectiveness of waste management in reducing the levels of plastics entering Australia’s marine environment". For specific data outputs from this project, please see child records associated with this metadata. -------------------- This project will contribute to better understanding where to target investment in abatement measures by providing information on the extent of the leakage of plastic materials into the marine environment, where the greatest leakages are and in what quantity, and what form they take (e.g. plastic bags, packaging, takeaway containers). It will also identify what type of facilities, policies and outreach strategies governments (state and local) have in place and undertake an assessment of their effectiveness. The objectives of this project are to: 1. Investigate the relationship between plastic debris in the marine environment and litter data from nearby sites; 2. Determine whether there are identifiable pathways through which plastic debris moves into the marine environment; 3. Investigate whether particular investments in facilities, policies or outreach are effective in reducing plastic debris on coasts and in oceans and where investment should be directed in the future; and 4. Initiate an internal department workshop to socialise the outcomes of the research across the relevant arms of the department, including staff involved in approvals, waste, protected species, and parks, and explore the utility of existing data to address the Department’s needs, including those arising from the TAP and the Senate Inquiry. Planned Outputs • A written report and plain English summary for use by state, territory and local governments, which: - Synthesises existing knowledge on the relationship between debris in the marine environment and litter data from nearby sites, the types of litter and the pathways through which litter moves into the marine environment. - Summarises existing coastal debris/litter survey methodologies with discussion of applications of each. • A list of the activities and programs associated with plastic waste reduction (including facilities, policies and outreach), • A publically accessible analysis and summary of different survey methods aiming to reduce debris inputs to the marine environment. - The cost of the activities and programs - Ranking of activities and programs regarding their effectiveness in reducing plastic waste in the marine environment. • Conclusions on where marine debris hot spots are in Australia’s marine environment and effective mitigation strategies. • Recommendations on where more information (scientific, policy, infrastructure, community engagement) is required to obtain a better understanding of the problem and possible solutions. This may include identifying knowledge gaps and needs for further analysis
-
This dataset describes visual sightings of marine megafauna (whales, dolphins and sharks) obtained during a series of dedicated aerial surveys conducted as part of a NESP Marine Biodiversity Hub project within and around the Bremer Marine Park, southern Western Australia. The data reflect 25 hours of observer effort (on transect), and 62 sightings of four identifiable species, including killer whales (Orcinus orca), sperm whales (Physeter macrocephalus), long-finned pilot whales (Globicephala melas), and bottlenose dolphins (Tursiops sp.). Numerous unidentified cetaceans and sharks were also seen. For more information, see: https://www.nespmarine.edu.au/project/ep2-surveying-marine-life-canyons-bremer-bay
-
This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project A12 - "Scoping a seascape approach to managing and recovering Northern Australian threatened and migratory marine species". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Northern Australia is the current focus of substantial economic development, which has the potential to impact biodiversity and cultural values. The Northern Seascape scoping project will assess the status of knowledge of EPBC-listed Threatened and Migratory Marine species, and pressures, Indigenous priorities, habitats, fisheries bycatch, and EPBC referrals in relation to them across the North Marine Bioregion (coast to EEZ edge). The focus will be at the multiple taxa level, including elasmobranchs, shorebirds, turtles and cetaceans. The project will scope research needs and directions for a broad Northern Seascape project (2018–2020), by identifying future research hotspots. Planned Outputs • Maps of Threatened and Migratory Marine species occurrence and habitats, and a gap analysis of research and data needs • Maps of state and trends in pressures and Threatened and Migratory Marine species, and the intersection between them • A report on Indigenous marine research and management priorities for Threatened and Migratory Marine species • Maps and time-series graphs that depict the extent and timing of past changes in coastal habitats that are important for TMM species • Identification of Threatened and Migratory Marine species bycatch and bycatch mitigation research priorities • Identification of EPBC referral spatial and species trends • Data, data visualisation and summaries available online through an appropriate web-based portal and/or existing internal DoEE information products • Project report synthesizing northern Australian Threatened and Migratory Marine species, pressures, Indigenous priorities, coastal habitat change, fisheries bycatch mitigation research priorities, and EPBC referral trends, and the identification of future research hotspots
-
The ETAS (Eastern TASmania) model is a high-resolution (~2 km in the horizontal) ocean model for eastern Tasmania, providing three-dimensional estimates of monthly mean temperature, salinity, and circulation over the 1993-2016 period. This dataset consists of temperature, salinity, meridional (N-S), zonal (E-W), vertical, along- and cross-shore currents, density, sea level and net surface heat flux organised into yearly files. A MATLAB script to extract portions of the data is available here: https://github.com/ecjoliver/extractETAS
-
The ETAS (Eastern TASmania) model is a high-resolution (~2 km in the horizontal) ocean model for eastern Tasmania, providing three-dimensional estimates of mean temperature, salinity, and circulation over the 1993-2016 period. This dataset consists of temperature, salinity, meridional (N-S), zonal (E-W), vertical, along- and cross-shore currents, density, sea level and net surface heat flux organised into yearly files and aggregated daily or monthly. A MATLAB script to extract portions of the data is available here: https://github.com/ecjoliver/extractETAS
-
The ETAS (Eastern TASmania) model is a high-resolution (~2 km in the horizontal) ocean model for eastern Tasmania, providing three-dimensional estimates of daily temperature, salinity, and circulation over the 1993-2016 period. This dataset consists of temperature, salinity, meridional (N-S), zonal (E-W), vertical, along- and cross-shore currents, density, sea level and net surface heat flux organised into yearly files. A MATLAB script to extract portions of the data is available here: https://github.com/ecjoliver/extractETAS
-
Raised features were derived by aggregating and dissolving the boundaries of the 1 degree S57 file series for the Australian continental shelf and Lord Howe Island shelf (200 m) depicting depth area features. An algorithm was applied to the data that isolated these features from surrounding lower features or plains.
-
Seabed areas were derived by aggregating and dissolving the boundaries of the 1 degree S57 file series for the Australian continental shelf and Lord Howe Island shelf (200 m). These areas were defined by the Australian Hydrographic Service (AHS).
-
This dataset has been superseded by https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/0145df96-3847-474b-8b63-a66f0e03ff54 (Victorian Statewide Marine Habitat Map 2023). The Victorian Benthic Habitats - Western Port Bay (CBICS) is a synthesis of all existing benthic habitat characterisations of the embayment which have been reclassified to conform to the Combined Biotope Classification Scheme (CBiCS). Base layers for the synthesised dataset were sourced from data provided by: Marine and Freshwater Resources Institute, Queenscliff, Victoria Institute for Sustainability and Innovation, Victoria University, Melbourne. Parks Victoria, Victorian Government Deakin University, Victoria Department of Environment, Land, Water and Planning, Victorian Government
-
This meta data describes the raw output of the SES DEB-IBM built in NetLogo (version 6.0.1, March 2017; available from http://modelingcommons.org/browse/one_model/5348). The raw output consists of .csv files from several model runs. The detailed explanation of the model workings and background are published in Goedegebuure et al. (2018, PLoS ONE; Modelling southern elephant seals Mirounga leonina using an individual-based model coupled with a dynamic energy budget; DOI: 10.1371/journal.pone.0194950). In short: we developed an individual-based model which is coupled with a dynamic energy budget (a DEB-IBM) for southern elephant seals to demonstrate a method for detailed representation of marine mammals. We aimed to develop a model which could i) simulate energy use and life histories, as well as breeding traits of southern elephant seals in an emergent manner, ii) project a stable population over time, and iii) have realistic population dynamics and structure based on emergent life history features (such as age at first breeding, lifespan, fecundity and (yearling) survival). We evaluated the model's ability to represent a stable population over long time periods (> 10 generations), including the sensitivity of the emergent properties to variations in key parameters. The model was developed using life history data of female southern elephant seals from Macquarie Island and follows individuals from birth to death. The information collected in the raw output are the same for the baseline model (stable, and with standard parameters), and the modified models to test for 1) low, and 2) high food availability, 3) low, and 4) high weaning thresholds (energetic level at which pups transition to juveniles), 5) low, and 6) high puberty thresholds (energetic level at which juveniles transition to physically mature adults). As well as recording the parameter values as set in the model, each .csv file records: 1) run number (usually 1-10) 2) step (time step, days) 3) min age at first breeding (years) 4) min age of adult 5) mean age of adult 6) mean age of juvenile 7) max age of individuals 8) max number of pups per female 9) fecundity 10) max size of individuals 11) mean size of adults 12) mean size of juveniles 13) total count of modelled population 14) total count of embryos 15) total count of pups 16) total count of yearlings 17) total count of juveniles (includes yearlings) 18) total count of adults 19) mean food availability of independent individuals (those not reliant on their mother) that are not fasting/moulting 20) carrying capacity (or expected equilibrium) 21) seed NB. NetLogo calls individuals within the model turtles - thus output will mention turtles. Stages are as follows 0 = foetus, 1 = pup, 2 = juvenile, 3 = adult. Status are as follows, 0 = dependent on mother, 1 = fasting, 2 = foraging.
IMAS Metadata Catalogue