Creation year


43 record(s)
Type of resources
Contact for the resource
Provided by
From 1 - 10 / 43
  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project A13 - "Estimation of population abundance and mixing of southern right whales in the Australian and New Zealand regions". For specific data outputs from this project, please see child records associated with this metadata. -------------------- A comprehensive understanding of the population abundance and degree of spatial connectivity of southern right whales in Australian waters is currently lacking. This limits assessments of the species recovery and understanding of the nature and degree of difference between the south-eastern and south-western Australian populations. This project will provide, for the first time, an abundance estimate of the total Australian population of southern right whales. It will also investigate the connectedness of whales that utilise breeding areas on the eastern, southern and western coasts of Australia. Information provided by this project will allow the Australian government to better evaluate progress made against the Conservation Management Plan for southern right whales and ensure conservation efforts for the species are effectively coordinated at the regional level. Planned Outputs • Data summaries for populating models used to estimate abundance and connectivity • An estimate of population abundance at the national scale and associated uncertainty • An evaluation of movement and spatial mixing across southern Australia

  • This resource includes multibeam sonar backscatter data for Beagle Marine Park (Bass Strait) collected by Geoscience Australia (GA) and the Institute for Marine & Antarctic Studies (University of Tasmania; UTAS) during the period 17 – 26 June 2018 on the RV Bluefin. The survey was undertaken as a collaborative project funded through the National Environmental Science Program Marine Biodiversity Hub, with co-investment by GA and UTAS. The purpose of the project was to build baseline information for benthic habitats in the Beagle Marine Park that will support ongoing environmental monitoring within the South-east Marine Park Network as part of the 10-year management plan (2013-2023). Data acquisition for the project was completed during three separate voyages: Phase 1 - Seabed mapping by multibeam sonar; Phase 2 – Seabed imagery acquisition by Autonomous Underwater Vehicle, and sediment sampling; Phase 3 – Survey of demersal fish communities using Baited Remote Underwater Video (BRUVs). This dataset from Phase 1 comprises 11 backscatter grids derived from multibeam sonar data gridded at 1 m spatial resolution, covering a combined area of 364 km2. A detailed report on the survey is provided in: Falster, G., Monk, J., Carroll, A., Siwabessy, J., Deane, A., Picard, K., Dando, N., Hulls, J., Nichol, S., Barrett, N. 2019. Australian Marine Park Baseline and Monitoring Survey: Post Survey Report, Beagle Marine Park, South-east Marine Park Network. Report to the National Environmental Science Program, Marine Biodiversity Hub.

  • Data were collected from 28 artificial reefs varying in size and supporting different densities of transplanted kelp (Ecklonia radiata). We used rope fibre habitats (RFHs) attached to the benthos of the reefs and destructive sampling of understory algae to collect data on epifaunal invertebrates that naturally colonised the reefs (e.g. secondary productivity, species richness, Shannon diversity). The goal of the research was to understand how kelp structure influences the biodiversity and secondary productivity of epifauna.

  • Categories    

    This is a collection of iceberg surface areas digitized by hand from a range of satellite images. The data may be useful for classifying ice shelf behaviour.

  • Antarctic krill (Euphausia superba) are a keystone species in the Southern Ocean, but little is known about how they will respond to climate change. Ocean acidification, caused by sequestration of carbon dioxide into ocean surface waters (pCO2), is known to alter the lipid biochemistry of some organisms. This can have cascading effects up the food chain. In a year-long laboratory experiment adult krill were exposed to ambient seawater pCO2 levels (400 μatm), elevated pCO2 levels that mimicked near-future ocean acidification (1000, 1500 and 2000 μatm) and an extreme pCO2 level (4000 μatm). The laboratory light regime mimicked the seasonal Southern Ocean photoperiod and krill received a constant food supply. Total lipid mass (mg g -1 DM) of adult krill was unaffected by near-future levels of seawater pCO2. Fatty acid composition (%) and fatty acid ratios associated with immune responses and cell membrane fluidity were also unaffected by near-future pCO2, apart from an increase in 18:3n-3/18:2n-6 ratios in krill in 1500 μatm pCO2 in winter and spring. Extreme pCO2 had no effect on krill lipid biochemistry during summer. During winter and spring, krill in extreme pCO2 had elevated levels of omega-6 fatty acids (up to 1.2% increase in 18:2n-6, up to 0.8% increase in 20:4n-6 and lower 18:3n-3/18:2n-6 and 20:5n-3/20:4n-6 ratios), and showed evidence of increased membrane fluidity (up to three-fold increase in phospholipid/sterol ratios). These results indicate that the lipid biochemistry of adult krill is robust to near-future ocean acidification.

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub project E7 - "Assessing the feasibility of restoring giant kelp beds in eastern Tasmania". For specific data outputs from this project, please see child records associated with this metadata. -------------------- This project will extend an externally funded project conducted through UTAS commencing in 2018 to select for thermally tolerant and low-nutrient-tolerant giant kelp (Macrocystis pyrifera) genotypes, and to examine effects of acclimation of selected genotypes by pre-exposure to warm, nutrient-poor conditions. The proposed project will outplant pre-exposed selected genotypes of giant kelp as micro-sporophytes in an experiment with and without provision of an added source of nutrient. The work is designed to assess the feasibility of this approach as a means to develop minimum patch sizes for giant kelp that can be self-replacing and self-expanding, thus providing restoration and future climate-proofing options for this EPBC-listed marine community. Planned Outputs • Experimental data from macrocystis restoration • Final report

  • IMAS/CSIRO undertook a multibeam mapping campaign in eastern and Southern Tasmania to map shelf waters of the Freycinet, Huon and Tasman Fracture Marine Parks and several reference areas for the Tasman Fracture Park, including waters around Pedra Brancha and South-west Cape. The dataset includes a post-processed transit along the mid-shelf i=of Western Tasmania. The dataset includes raw mutibeam outputs and post-processed data, including Caris Files, xyz data and geotiffs. A data report for this has been produced by CSIRO. The study was intended to increase knowledge of the distribution of habitats within the SE Australian Australian Marine Park network, and at nearby reference areas with similar habitat. This information is required to underpin subsequent biological monitoring of key habitats within the AMP network, and to contrast the observations within parks with nearby fished locations to determine the extent that changes in biological communities are driven by natural vs anthropogenic pressures.

  • Categories    

    Fatty acid analysis is a powerful tool in food web research for estimating dietary sources in marine predators. However, the utility of fatty acids as dietary indicators from whole lipid samples, rather than from separate lipid classes, has been questioned. Samples are often collected at a single time point, precluding seasonal dietary comparisons. We investigated variations in the fatty acid composition of structural (phospholipids) and storage lipids (triacylglycerols) of Antarctic krill (Euphausia superba) using fisheries samples obtained over one year. Seasonal variation was observed in fatty acid biomarkers within triacylglycerol and phospholipid fractions of krill. Fatty acids in krill triacylglycerols (thought to better represent recent diet), reflected omnivorous feeding with highest percentages of flagellate biomarkers (18:4n-3) in summer, and diatom biomarkers (16:1n-7c) in autumn, winter and spring. Carnivory biomarkers (∑ 20:1 + 22:1 and 18:1n-9c/18:1n-7c) in krill were greater in autumn. Phospholipid fatty acids were less variable and higher in 20:5n-3 and 22:6n-3, which are essential components of cell membranes. Sterol composition did not yield detailed dietary information, but percentages of the major krill sterol, cholesterol, were significantly higher in winter and spring compared with summer and autumn. Unexpectedly, 18:4n-3 and copepod markers ∑ 20:1 + 22:1 were not strongly associated with the triacylglycerol fraction during some seasons. Krill may mobilise 18:4n-3 to phospholipids for conversion to long chain polyunsaturated fatty acids, which would have implications for its role as a dietary biomarker. For the first time, we demonstrate the dynamic seasonal relationship between specific biomarkers and krill lipid classes.

  • The AUStralian Tidal Energy (AUSTEn) project was a three year project (2018 - 2020) funded by the Australian Renewable Energy National Agency (agreement number G00902) led by the Australian Maritime College (University of Tasmania), in partnership with CSIRO and University of Queensland. The project had a strong industry support (Atlantis Resources Limited, MAKO Tidal Turbines Ltd, Spiral Energy Corporation Ltd). The aim of the project was to assess the technical and economic feasibility of tidal energy in Australia, based on the best understanding of resource achievable. For further information and output of the project, please visit the AUSTEn project website

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project D5 - "A standardised national assessment of the state of coral and rocky reef biodiversity". For specific data outputs from this project, please see child records associated with this metadata. -------------------- This project will involve integration of a national suite of reef biota Underwater Visual Census (UVC) monitoring datasets (Reef Life Survey (RLS), University of Tasmania (UTAS), Australian Institute for Marine Science (AIMS), Parks Victoria (PV), SA Department of environment, water and natural resources (DEWNR)) to provide a comprehensive update to the state of Australian Reefs report for the next national State of the Environment Report. Maps and indicator trends will show changes in the health of rocky and coral reefs nationally from 2005 to 2020. The update will include addition of a new index which summarises the population trajectories for 600-1000 reef species nationally. Individual species trajectories will provide the only threat status information for the majority of these species, assisting future listing of previously unassessed species if significant declines are detected. Planned Outputs • Maps and trends in SoE indicators • Raw data underlying SoE analyses (data use agreement must be signed with AIMS for access to that data) • Various scientific papers