Creation year


43 record(s)
Type of resources
Contact for the resource
Provided by
From 1 - 10 / 43
  • IMAS/CSIRO undertook a multibeam mapping campaign in eastern and Southern Tasmania to map shelf waters of the Freycinet, Huon and Tasman Fracture Marine Parks and several reference areas for the Tasman Fracture Park, including waters around Pedra Brancha and South-west Cape. The dataset includes a post-processed transit along the mid-shelf i=of Western Tasmania. The dataset includes raw mutibeam outputs and post-processed data, including Caris Files, xyz data and geotiffs. A data report for this has been produced by CSIRO. The study was intended to increase knowledge of the distribution of habitats within the SE Australian Australian Marine Park network, and at nearby reference areas with similar habitat. This information is required to underpin subsequent biological monitoring of key habitats within the AMP network, and to contrast the observations within parks with nearby fished locations to determine the extent that changes in biological communities are driven by natural vs anthropogenic pressures.

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project D5 - "A standardised national assessment of the state of coral and rocky reef biodiversity". For specific data outputs from this project, please see child records associated with this metadata. -------------------- This project will involve integration of a national suite of reef biota Underwater Visual Census (UVC) monitoring datasets (Reef Life Survey (RLS), University of Tasmania (UTAS), Australian Institute for Marine Science (AIMS), Parks Victoria (PV), SA Department of environment, water and natural resources (DEWNR)) to provide a comprehensive update to the state of Australian Reefs report for the next national State of the Environment Report. Maps and indicator trends will show changes in the health of rocky and coral reefs nationally from 2005 to 2020. The update will include addition of a new index which summarises the population trajectories for 600-1000 reef species nationally. Individual species trajectories will provide the only threat status information for the majority of these species, assisting future listing of previously unassessed species if significant declines are detected. Planned Outputs • Maps and trends in SoE indicators • Raw data underlying SoE analyses (data use agreement must be signed with AIMS for access to that data) • Various scientific papers

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project A14 - "Identification of near-shore habitats of juvenile white sharks in Southwestern Australia". For specific data outputs from this project, please see child records associated with this metadata. -------------------- In early 2018, the CSIRO provided the first estimate of abundance for the southern-western adult white shark. Establishing an estimate of total abundance was not possible due to the lack of information of the juvenile life history stage in south-western Australia. The estimate of adult abundance also included trend (essentially zero or slightly negative), however, it was noted that to confirm the trend, a further decade of sampling would be required. This can be reduced if we identify near-shore habitats where juvenile white sharks from the southern-western population can be readily accessed. This pilot project will investigate credible anecdotal evidence of juvenile white sharks using near-shore habitat near the head of the Great Australia Bight, and inform future project development steps. The pilot project will include collaboration and the opportunity for capacity building with the Yatala Land Management group. The outcome of this pilot project will inform whether or not to proceed to future (on-water) activities. Planned Outputs • Spatial maps showing juvenile white-shark aggregation areas that include Australian marine park boundaries and zoning in jpeg format • Shapefile of juvenile white-shark aggregation areas provided to ERIN • High quality and project relevant images (still and video) suitable for communications purposes • Summary (and images) of opportunistic wildlife observations within the Great Australian Bight Marine Park (Commonwealth waters) • Final report

  • This resource contains access links to all data collected and and created under the ACE-CRC program. See 'online resources' section of this record for index of all online ACE-CRC data.

  • This resource includes multibeam sonar backscatter data for Beagle Marine Park (Bass Strait) collected by Geoscience Australia (GA) and the Institute for Marine & Antarctic Studies (University of Tasmania; UTAS) during the period 17 – 26 June 2018 on the RV Bluefin. The survey was undertaken as a collaborative project funded through the National Environmental Science Program Marine Biodiversity Hub, with co-investment by GA and UTAS. The purpose of the project was to build baseline information for benthic habitats in the Beagle Marine Park that will support ongoing environmental monitoring within the South-east Marine Park Network as part of the 10-year management plan (2013-2023). Data acquisition for the project was completed during three separate voyages: Phase 1 - Seabed mapping by multibeam sonar; Phase 2 – Seabed imagery acquisition by Autonomous Underwater Vehicle, and sediment sampling; Phase 3 – Survey of demersal fish communities using Baited Remote Underwater Video (BRUVs). This dataset from Phase 1 comprises 11 backscatter grids derived from multibeam sonar data gridded at 1 m spatial resolution, covering a combined area of 364 km2. A detailed report on the survey is provided in: Falster, G., Monk, J., Carroll, A., Siwabessy, J., Deane, A., Picard, K., Dando, N., Hulls, J., Nichol, S., Barrett, N. 2019. Australian Marine Park Baseline and Monitoring Survey: Post Survey Report, Beagle Marine Park, South-east Marine Park Network. Report to the National Environmental Science Program, Marine Biodiversity Hub.

  • The AUStralian Tidal Energy (AUSTEn) project was a three year project (2018 - 2020) funded by the Australian Renewable Energy National Agency (agreement number G00902) led by the Australian Maritime College (University of Tasmania), in partnership with CSIRO and University of Queensland. The project had a strong industry support (Atlantis Resources Limited, MAKO Tidal Turbines Ltd, Spiral Energy Corporation Ltd). The aim of the project was to assess the technical and economic feasibility of tidal energy in Australia, based on the best understanding of resource achievable. For further information and output of the project, please visit the AUSTEn project website

  • Phytoplankton productivity in the polar Southern Ocean (SO) plays an important role in the transfer of carbon from the atmosphere to the ocean’s interior, a process called the biological carbon pump, which helps regulate global climate. SO productivity in turn is limited by low iron, light, and temperature, which restrict the ef- ficiency of the carbon pump. Iron and light can colimit productivity due to the high iron content of the photosynthetic photosystems and the need for increased photosystems for low-light acclimation in many phytoplankton. Here we show that SO phytoplankton have evolved critical adaptations to enhance photosynthetic rates under the joint constraints of low iron, light, and temperature. Under growth-limiting iron and light levels, three SO species had up to sixfold higher photosynthetic rates per photosystem II and similar or higher rates per mol of photosynthetic iron than tem- perate species, despite their lower growth temperature (3 vs. 18 °C) and light intensity (30 vs. 40 μmol quanta·m2·s−1), which should have decreased photosynthetic rates. These unexpectedly high rates in the SO species are partly explained by their unusually large photosynthetic antennae, which are among the largest ever recorded in marine phytoplankton. Large antennae are disadvan- tageous at low light intensities because they increase excitation energy loss as heat, but this loss may be mitigated by the low SO temperatures. Such adaptations point to higher SO production rates than environmental conditions should otherwise permit, with implications for regional ecology and biogeochemistry.

  • Categories  

    Between 2009-2012, Geoscience Australia conducted three surveys to Joseph Bonaparte Gulf and the Timor Sea on the R.V. Solander, in collaboration with the Australian Institute of Science and the Museum and Art Gallery of the Northern Territory. The study areas overlapped the Oceanic Shoals Commonwealth Marine Reserve and the carbonate banks and terraces within it. The surveys were conducted as part of the Australian Government's Energy Security Program (2007-2011) and the National Environment Research Program (2011-2015). On the surveys, a benthic sled was deployed to collect biological samples from the seafloor. Samples were sorted onboard according to phylum, photographed and then sent to taxonomists for species-level identifications. This dataset provides a list of all identified sponge species. The associated image catalogue of collected sponges can be accessed here:

  • Categories    

    In support of future science missions, an engineering demonstration was conducted to show the ability of the nupiri muka AUV to be deployed and operated at an ice shelf. The AUV was deployed from Davis Station, Antarctica, to conduct underwater surveys in the vicinity of, and beneath, the Sørsdal ice shelf. The AUV conducted several surface transits from the station to the ice shelf, where dive missions at various depths were conducted. The primary mode of operation was the AUV tracking near the seafloor. In addition, a patch survey was conducted near the stations, where several sediment grabs were taken.

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project A13 - "Estimation of population abundance and mixing of southern right whales in the Australian and New Zealand regions". For specific data outputs from this project, please see child records associated with this metadata. -------------------- A comprehensive understanding of the population abundance and degree of spatial connectivity of southern right whales in Australian waters is currently lacking. This limits assessments of the species recovery and understanding of the nature and degree of difference between the south-eastern and south-western Australian populations. This project will provide, for the first time, an abundance estimate of the total Australian population of southern right whales. It will also investigate the connectedness of whales that utilise breeding areas on the eastern, southern and western coasts of Australia. Information provided by this project will allow the Australian government to better evaluate progress made against the Conservation Management Plan for southern right whales and ensure conservation efforts for the species are effectively coordinated at the regional level. Planned Outputs • Data summaries for populating models used to estimate abundance and connectivity • An estimate of population abundance at the national scale and associated uncertainty • An evaluation of movement and spatial mixing across southern Australia