Creation year

2019

43 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 43
  • This resource contains access links to all data collected and and created under the ACE-CRC program. See 'online resources' section of this record for index of all online ACE-CRC data.

  • CSV files of location data (position estimates) for hammerhead sharks tagged with Wildlife Computers miniPAT archival tags and SPOT6 tags. Note that miniPAT data estimates may be up to 100 km (Kevin Lay, Wildlife computers pers comm). Location estimates from archival miniPAT tags also need to be considered against ARGOS location classes (see http://www.argos-system.org/manual/3-location/34_location_classes.htm). Collectively, movements are restricted within state waters with no hammerheads moving across state or International boundaries.

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project D6 - "Socioeconomic benchmarks". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Social and economic values are key drivers for marine science and marine policy but are too rarely integrated with marine biodiversity monitoring programs. In close consultation with Parks Australia (PA) we will review existing metrics used to survey social and economic values associated with marine parks. This review will include consulting with national and international expertise and actively consulting with State and other Commonwealth agencies, some of whom are currently conducting reviews or have existing frameworks for surveying social and economic values (e.g Great Barrier Reef Marine Park Authority (GBRMPA), NSW Department of Primary Industries (DPI)). In collaboration with national partners and PA we will organise a national methods workshops to discuss and refine metrics and methods to quantify social and economic benchmarks for State and Australian Marine Parks (AMPs) and produce Standard Operating Procedure’s (SOP) relevant to AMPs taking into consideration the Department of the Environment and Energy’s (DoEE’s) environmental accounting processes and PA’s Monitoring, Evaluation, Reporting and Improvement (MERI) framework. Planned Outputs • SOP for measuring social and economic metrics for AMPs • Final report on essential (key) AMP social and economic metrics • Summaries of research and surveys made available through the Marine Parks Science Atlas

  • This resource includes multibeam sonar backscatter data for Beagle Marine Park (Bass Strait) collected by Geoscience Australia (GA) and the Institute for Marine & Antarctic Studies (University of Tasmania; UTAS) during the period 17 – 26 June 2018 on the RV Bluefin. The survey was undertaken as a collaborative project funded through the National Environmental Science Program Marine Biodiversity Hub, with co-investment by GA and UTAS. The purpose of the project was to build baseline information for benthic habitats in the Beagle Marine Park that will support ongoing environmental monitoring within the South-east Marine Park Network as part of the 10-year management plan (2013-2023). Data acquisition for the project was completed during three separate voyages: Phase 1 - Seabed mapping by multibeam sonar; Phase 2 – Seabed imagery acquisition by Autonomous Underwater Vehicle, and sediment sampling; Phase 3 – Survey of demersal fish communities using Baited Remote Underwater Video (BRUVs). This dataset from Phase 1 comprises 11 backscatter grids derived from multibeam sonar data gridded at 1 m spatial resolution, covering a combined area of 364 km2. A detailed report on the survey is provided in: Falster, G., Monk, J., Carroll, A., Siwabessy, J., Deane, A., Picard, K., Dando, N., Hulls, J., Nichol, S., Barrett, N. 2019. Australian Marine Park Baseline and Monitoring Survey: Post Survey Report, Beagle Marine Park, South-east Marine Park Network. Report to the National Environmental Science Program, Marine Biodiversity Hub.

  • The AUStralian Tidal Energy (AUSTEn) project was a three year project (2018 - 2020) funded by the Australian Renewable Energy National Agency (agreement number G00902) led by the Australian Maritime College (University of Tasmania), in partnership with CSIRO and University of Queensland. The project had a strong industry support (Atlantis Resources Limited, MAKO Tidal Turbines Ltd, Spiral Energy Corporation Ltd). The aim of the project was to assess the technical and economic feasibility of tidal energy in Australia, based on the best understanding of resource achievable. For further information and output of the project, please visit the AUSTEn project website www.austen.org.au.

  • The AUStralian Tidal Energy (AUSTEn) project was a three year project (2018 - 2020) funded by the Australian Renewable Energy National Agency (agreement number G00902) led by the Australian Maritime College (University of Tasmania), in partnership with CSIRO and University of Queensland. The project had a strong industry support (Atlantis Resources Limited, MAKO Tidal Turbines Ltd, Spiral Energy Corporation Ltd). The aim of the project was to assess the technical and economic feasibility of tidal energy in Australia, based on the best understanding of resource achievable. For further information and output of the project, please visit the AUSTEn project website www.austen.org.au.

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project A13 - "Estimation of population abundance and mixing of southern right whales in the Australian and New Zealand regions". For specific data outputs from this project, please see child records associated with this metadata. -------------------- A comprehensive understanding of the population abundance and degree of spatial connectivity of southern right whales in Australian waters is currently lacking. This limits assessments of the species recovery and understanding of the nature and degree of difference between the south-eastern and south-western Australian populations. This project will provide, for the first time, an abundance estimate of the total Australian population of southern right whales. It will also investigate the connectedness of whales that utilise breeding areas on the eastern, southern and western coasts of Australia. Information provided by this project will allow the Australian government to better evaluate progress made against the Conservation Management Plan for southern right whales and ensure conservation efforts for the species are effectively coordinated at the regional level. Planned Outputs • Data summaries for populating models used to estimate abundance and connectivity • An estimate of population abundance at the national scale and associated uncertainty • An evaluation of movement and spatial mixing across southern Australia

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub project E7 - "Assessing the feasibility of restoring giant kelp beds in eastern Tasmania". For specific data outputs from this project, please see child records associated with this metadata. -------------------- This project will extend an externally funded project conducted through UTAS commencing in 2018 to select for thermally tolerant and low-nutrient-tolerant giant kelp (Macrocystis pyrifera) genotypes, and to examine effects of acclimation of selected genotypes by pre-exposure to warm, nutrient-poor conditions. The proposed project will outplant pre-exposed selected genotypes of giant kelp as micro-sporophytes in an experiment with and without provision of an added source of nutrient. The work is designed to assess the feasibility of this approach as a means to develop minimum patch sizes for giant kelp that can be self-replacing and self-expanding, thus providing restoration and future climate-proofing options for this EPBC-listed marine community. Planned Outputs • Experimental data from macrocystis restoration • Final report

  • IMAS/CSIRO undertook a multibeam mapping campaign in eastern and Southern Tasmania to map shelf waters of the Freycinet, Huon and Tasman Fracture Marine Parks and several reference areas for the Tasman Fracture Park, including waters around Pedra Brancha and South-west Cape. The dataset includes a post-processed transit along the mid-shelf i=of Western Tasmania. The dataset includes raw mutibeam outputs and post-processed data, including Caris Files, xyz data and geotiffs. A data report for this has been produced by CSIRO. The study was intended to increase knowledge of the distribution of habitats within the SE Australian Australian Marine Park network, and at nearby reference areas with similar habitat. This information is required to underpin subsequent biological monitoring of key habitats within the AMP network, and to contrast the observations within parks with nearby fished locations to determine the extent that changes in biological communities are driven by natural vs anthropogenic pressures.

  • Phytoplankton productivity in the polar Southern Ocean (SO) plays an important role in the transfer of carbon from the atmosphere to the ocean’s interior, a process called the biological carbon pump, which helps regulate global climate. SO productivity in turn is limited by low iron, light, and temperature, which restrict the ef- ficiency of the carbon pump. Iron and light can colimit productivity due to the high iron content of the photosynthetic photosystems and the need for increased photosystems for low-light acclimation in many phytoplankton. Here we show that SO phytoplankton have evolved critical adaptations to enhance photosynthetic rates under the joint constraints of low iron, light, and temperature. Under growth-limiting iron and light levels, three SO species had up to sixfold higher photosynthetic rates per photosystem II and similar or higher rates per mol of photosynthetic iron than tem- perate species, despite their lower growth temperature (3 vs. 18 °C) and light intensity (30 vs. 40 μmol quanta·m2·s−1), which should have decreased photosynthetic rates. These unexpectedly high rates in the SO species are partly explained by their unusually large photosynthetic antennae, which are among the largest ever recorded in marine phytoplankton. Large antennae are disadvan- tageous at low light intensities because they increase excitation energy loss as heat, but this loss may be mitigated by the low SO temperatures. Such adaptations point to higher SO production rates than environmental conditions should otherwise permit, with implications for regional ecology and biogeochemistry.