geoscientificInformation
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
Rock samples were dredged from seamounts in the southern Tasman Sea on the RV Investigator, voyage IN2018_V08
-
Flythrough movie of Gifford Marine Park, which is located 700 km east of Brisbane, Australia. The park is situated about halfway along the Lord Howe Rise seamount chain on the western flank of the Lord Howe Rise. Seamounts along this chain formed from Miocene volcanism via a migrating magma source (“hotspot”) after the opening of the Tasman Sea. Two large, flat-topped volcanic seamounts dominate the park. Their gently sloping summits have accumulated veneers of sediment, which in places have formed fields of bedforms. Steep cliffs, debris and large mass movement scars encircle each seamount, and contrast with the lower gradient abyssal plains from which they rise. Spanning over 3 km of ocean depths, the seamounts are likely to serve multiple and important roles as breeding locations, resting areas, navigational landmarks or supplementary feeding grounds for some cetaceans (e.g. humpback whales, sperm whales). They may also act as important aggregation points for other highly migratory pelagic species. The bathymetry shown here was collected on two surveys - the first in 2007 by Geoscience Australia and the second in 2017 by Geoscience Australia in collaboration with the Japan Agency for Marine-Earth Science and Technology. The Gifford Marine Park has also been the focus of a study undertaken by the Marine Biodiversity Hub as part of the National Environmental Science Program. This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.
-
Geoscience Australia has completed the first phase of an areal map of Australia's coastal geomorphological units. Utilising pre-existing GIS datasets procured from local, state and federal government agencies, this national scale map conforms to a coastal geomorphology classification scheme developed at Geoscience Australia. Phase one consists of a geodatabase containing a series of state wide feature datasets that have been reclassified into the national coastal geomorphology classification scheme.
-
Understanding the patterns and characteristics of sedimentary deposits on the conjugate Australian-Antarctic margins is critical to reveal the Cretaceous-Cenozoic tectonic, oceanographic and climatic conditions in the basin. However, unravelling its evolution has remained difficult due to the different seismic stratigraphic interpretations on each margin and sparse drill sites. Here, for the first time, we collate all available seismic reflection profiles on both margins and use newly available offshore drilling data, to develop a consistent seismic stratigraphic framework across the Australian-Antarctic basins. We find sedimentation patterns similar in structure and thickness, prior to the onset of Antarctic glaciation, enabling the basin-wide correlation of four major sedimentary units and their depositional history. We interpret that during the warm and humid Late Cretaceous (~83-65 Ma), large onshore river systems on both Australia and Antarctica resulted in deltaic sediment deposition offshore. We interpret that the onset of clockwise bottom currents during the Early Paleogene (~58-48 Ma) formed prominent sediment drift deposits along both continental rises. We suggest that these currents strengthened and progressed farther east through the Eocene. Coevally, global cooling (<48 Ma) and progressive aridification led to a large-scale decrease in sediment input from both continents. Two major Eocene hiatuses recovered by the IODP site U1356A at the Antarctic continental slope likely formed during this pre-glacial phase of low sedimentation and strong bottom currents. Our results can be used to constrain future paleo-oceanographic modelling of this region and aid understanding of the oceanographic changes accompanying the transition from a greenhouse to icehouse world.
-
An index of available 1 degree, 10 degree and 30 degree navigational S57 files that the Australian Hydrographic Service (AHS) holds. These were aggregated together to provide an overview for the NESP D3 Reef Project on potential sources of information.
-
This record describes a single aggregated dataset of the geomorphic habitat environment (facies) for Australia's 7 states and territories: New South Wales, Victoria, Tasmania, Queensland, Northern Territory, South Australia, Western Australia. The classification system contains 12 easily identifiable and representative environments: Barrier/back-barrier, Bedrock, Central Basin, Channel, Coral, Flood- and Ebb-tide Delta, Fluvial (bay-head) Delta, Intertidal Flats, Mangrove, Rocky Reef, Saltmarsh/Saltflat, Tidal Sand Banks (and Unassigned). These types represent habitats found across all coastal systems in Australia. For the New South Wales region, 134 coastal waterways are described. Most of the estuaries of New South Wales are under intense land use pressure with approximately 80% of the State's population living near an estuary (NSW Dept of Land and Water Conservation) For the Victorian region, 54 coastal waterways are described. Most of the 54 coastal waterways have a "Modified" environmental condition (as opposed to "Near Pristine"), according to the National Land and Water Resources Audit definition. For the Tasmanian region, 88 coastal waterways are described. The majority of near pristine estuaries in Tasmania are located in the south and west of the State and on Cape Barren Island, according to the Department of Primary Industries, Water and Environment. For the Queensland region, 213 coastal waterways are described. Southern and central Great Barrier Reef lagoon coasts have a broad spectrum of river, tide and wave- dominated estuaries. For the Northern Territory region, 63 coastal waterways are described. Estuaries on the northern Arnhem Land, Gulf of Carpentaria coasts are predominantly tide-dominated estuaries, which vary greatly in size and floodplain characteristics. For the South Australia region, 36 coastal waterways are described. Most of the 36 coastal waterways have a "Modified" environmental condition (as opposed to "Near Pristine"), according to the National Land and Water Resources Audit definition. For the Western Australia region, 103 coastal waterways are described. Western Australia has a diverse range of Estuaries due to different climates. Ranging from mostly "near pristine" and tide influenced estuaries in the north to "near pristine" wave dominated estuaries in the southwest region.
-
The Tasman Fracture Commonwealth Reserve complements the Port Davey Marine Reserve (encompassing Port Davey, Bathurst Channel and Bathurst Harbour), which was proclaimed by the Tasmanian Government in 2005. It spans the continental shelf, continental slope and deeper water ecosystems south of Tasmania, and is scored by steep canyons. It also encloses other geological features, including steep escarpments and troughs, saddles, basins, and part of a plateau that is over 400 km long and rises up to 3 km above the sea floor. The reserve includes a number of undersea peaks rising to less than 1500 m below the sea surface that provide habitat to deepwater hard corals. These corals provide a structure and habitat for a rich diversity of marine invertebrate animals that live attached corals. This record describes a geomorphology map for the Tasman Fracture CMR that was prepared using bathymetry and backscatter data sourced from CSIRO and Geoscience Australia.
-
Voyage IN2019_V04 contributed an additional 29,000 kms2 of seafloor survey data to the Coral Sea knowledge base. From this new bathymetric data individual seamounts have been extracted and have been classified to the Geoscience Australia Geomorphology Classification Scheme. This dataset contains two layers representing the classification layers- 1) Surface (Plain, Slope, Escarpment) and 2) fine scale Geomorphology of the seamount for the Calder Seamount. Ongoing research with this survey data will provide new insights into the detailed geomorphic shape and spatial relationships between adjacent seabed features. This information will be released in future publications to show the potential of how the scale of such seafloor data can be used for predictive habitat modelling when analysed with the biological data overlays.
-
The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including Middle Island, the project's easternmost site located within the Recherche Archipelago. The Recherche Archipelago provides habitats for a diverse range of both terrestrial and marine species, and can be accessed either by vessel from the town of Esperance, or by four wheel drive along the coastal roads adjoining the Cape Arid National Park.
-
This resource includes bathymetry data for Beagle Marine Park (Bass Strait) collected by Geoscience Australia (GA) and the Institute for Marine & Antarctic Studies (University of Tasmania; UTAS) during the period 17 - 26 June 2018 on the RV Bluefin. The survey was undertaken as a collaborative project funded through the National Environmental Science Program Marine Biodiversity Hub, with co-investment by GA and UTAS. The purpose of the project was to build baseline information for benthic habitats in the Beagle Marine Park that will support ongoing environmental monitoring within the South-east Marine Park Network as part of the 10-year management plan (2013-2023). Data acquisition for the project was completed during three separate voyages: Phase 1 - Seabed mapping by multibeam sonar; Phase 2 - Seabed imagery acquisition by Autonomous Underwater Vehicle, and sediment sampling; Phase 3 - Survey of demersal fish communities using Baited Remote Underwater Video (BRUVs). This dataset from Phase 1 comprises 11 bathymetry grids derived from multibeam sonar data gridded at 1 m spatial resolution, covering a combined area of 364 km2. A detailed report on the survey is provided in: Falster, G., Monk, J., Carroll, A., Siwabessy, J., Deane, A., Picard, K., Dando, N., Hulls, J., Nichol, S., Barrett, N. 2019. Australian Marine Park Baseline and Monitoring Survey: Post Survey Report, Beagle Marine Park South-east Marine Park Network. Report to the National Environmental Science Program, Marine Biodiversity Hub.
IMAS Metadata Catalogue