Creation year

2021

67 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 67
  • This record provides an overview of the NESP Marine and Coastal Hub small-scale study - "Australia’s Coastal Shorebirds: Trends and Prospects". No data outputs were generated by this project. -------------------- Coastal Australia is home to 37 regularly occurring migratory shorebird species, with many protected areas including Ramsar sites designated on the basis of shorebird populations. Many migratory shorebirds are declining rapidly, and hence the focus of conservation efforts at multiple levels of government in Australia and overseas. However, trend data are now nearly 10 years old, meaning the information available to assess where conservation actions are needed most urgently and whether conservation efforts are helping species recover are outdated. To ensure populations have the best chance at recovery and that resources are allocated where they are most likely to have the greatest positive impacts, it is critical to maintain up-to-date information on species trends. This project analysed 30 years of shorebird monitoring data collected by citizen science groups across Australia and curated by BirdLife Australia’s National Shorebird Monitoring Program to update national trend estimates, while also assessing the relative effects of human pressure and conservation efforts on population trends. In particular, it focused on 15 migratory shorebird species whose conservation status was being reassessed by the Australian Department of Climate Change, Energy, the Environment and Water. This project sets the stage for building the next decade of coastal shorebird conservation activity in Australia, coordinated through the national mechanism of the End User: National Migratory Shorebird Conservation Action Plan Steering Committee, with representatives from national and state governments as well as leading shorebird experts. Outputs • Fact Sheet on Australia's coastal shorebird trends and prospects [written] • Final Project Report, including a short summary of recommendations for policy makers of key findings [written]

  • In coastal ecosystems, seaweeds provide habitat and a food source for a variety of species including herbivores of commercial importance. In these systems seaweeds are the ultimate source of energy with any changes in the seaweeds invariably affecting species of higher trophic levels. Seaweeds are rich sources of nutritionally important compounds such as polyunsaturated fatty acids (PUFA) and are particularly rich in long-chain (≥ C20) PUFA (LC-PUFA). In southern Australia, the ‘Great Southern Reef’ has one of the most diverse assemblages of seaweeds in the world, which support highly productive fisheries and have been recognised as a promising resource of omega-3 LC-PUFA. Despite this, there is little information on the biochemical composition of most species and how it varies between sites and seasons. To address this knowledge gap, we undertook a survey to assess seasonal variability in the biochemical composition (fatty acids and nitrogen content) of abundant understory seaweeds across three sites in eastern Tasmania. The availability of nutritional compounds differed between sites and was primarily driven by differences in the biomass and the biochemical composition of the nutritious red seaweeds at each site. This variability may explain regional differences in the productivity of commercial fisheries. At the species level, seasonal changes in fatty acid composition were highly variable between species and sites, indicating that multiple environmental drivers influence fatty acid composition of seaweeds in this system. This finding suggests that commercial harvest of seaweeds from eastern Tasmania will need to consider species and site-specific variability in fatty acid composition.

  • Growth (shoot count) of Amphibolis antarctica and Posidonia australis following transplant to Middle Bluff and Dubaut Point, Shark Bay. Plants were transplanted by the Malgana people with assistance from UWA staff then assessed for shoot counts after 8 months.

  • This record provides an overview of the NESP Marine and Coastal Hub small-scale study - "Towards a consolidated and open-science framework for restoration monitoring". No data outputs were generated by this project. -------------------- Coastal habitat restoration is scaling up rapidly in Australia and covers a range of diverse ecosystems including oyster reefs, seagrass meadows, mangrove forests, kelp forests, and saltmarshes. While monitoring is commonly included in these projects, approaches are often uncoordinated, inconsistently funded, and rarely follow open science protocols. Previous NESP-funded projects have advanced understanding of the ecology and service provision of threatened ecosystems and established targets for repair based on reference conditions (e.g. Marine Biodiversity Hub project B4). They also created a national database of marine and coastal restoration projects (Australian Coastal Restoration Network: project E5) and supported the development of monitoring, evaluation, reporting and improvement (MERI) systems across various sectors. Building on this foundation, the current project synthesised monitoring approaches across multiple habitat types by drawing on the collective expertise of Australian researchers. It also explored the integration of emerging technologies—such as automation, artificial intelligence, and eDNA—to improve monitoring efficiency and cost-effectiveness. The primary output of this project is a coordinated, open-science monitoring framework that incorporates clearly defined restoration goals and a core set of universal variables. Developed through expert consultation, the framework supports consistent benchmarking across projects while accommodating habitat-specific and goal-driven metrics. The framework promotes data accessibility, standardised definitions, and the integration of new technologies to streamline the development of future restoration projects and maximise the value of restoration monitoring. Outputs • Best-practice toolkit / final project report [written]

  • NESP Marine Biodiversity Hub Project E7. Results from the outplanting of lab-selected and cultivated warm-adapted genotypes of giant kelp (Macrocystis pyrifera), at two trial restoration sites. A third restoration trial site had no surviving kelp, so those data were not included here. Data and details from lab-selection experiments can be found in the associated dataset - "NESP Marine Hub Project E7 - Macrocystis pyrifera thermal tolerance testing" https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/0b91d7fd-7d29-452f-954a-78cf75151035

  • This record provides an overview of the NESP Marine and Coastal Hub small-scale study - "Quantifying the ecosystem services of the Great Southern Reef". For specific data outputs from this project, please see child records associated with this metadata. -------------------- The Great Southern Reef (GSR) is an 8,000 km network of temperate rocky reefs stretching from Western Australia to New South Wales. Dominated by kelp forests, it is one of the world’s most biodiverse and productive marine ecosystems, supporting important fisheries, tourism, cultural values, and ecological functions. Despite its significance, kelp forests are in decline due to ocean warming, marine heatwaves, pollution, and expanding herbivore populations—threatening both biodiversity and the services these reefs provide. Evidence-based management is hindered without accurate estimates of the GSR's contribution to society and the economy. This project delivered the first systematic synthesis of existing data on the ecosystem services and economic value of the GSR, focusing on shallow reefs (0–50 m). Market and non-market services—such as commercial and recreational fishing, tourism, carbon sequestration, and existence value—were assessed for each state in which the GSR occurs. The synthesis highlighted the high societal dependence on the GSR, with over 17 million Australians living within 50 km of its waters and significant national engagement in related economic and cultural activities. All data inventoried by the project were aligned with national and international environmental-economic accounting standards to support future inclusion in Australia’s ocean accounting frameworks. This inventory provides the foundation for developing a national ocean account for kelp forests, and identifies the key data gaps that must be addressed to fully capture the GSR’s value and guide long-term policy and investment. Outputs • Inventory of data collated and assessed for the purpose of developing ecosystem accounts for GSR • Final technical report with analysed data, including a short summary of recommendations for policy makers of key findings (written)

  • Categories    

    Trace element data collected from 18 stations near the Mertz Glacier on the 2019 ENRICH voyage. Sea water was collected using a 12-bottle trace metal rosette (TMR) and acidified for analysis back in Hobart. Samples were measured using an offline seaFAST pre-concentration system and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) at the University of Tasmania. This data contributed to Smith et al., Circumpolar Deep Water and shelf sediments support late summer microbial iron remineralisation in Global Biogeochemical Cycles (2021).

  • Categories  

    Annotations of Centrostephanus rogersii sea urchin barrens derived from towed video at selected key abalone blocks along the east coast of Tasmania. The purpose of the study was to examine the patch dynamics of urchin barrens and to provide validation for the identification of urchin barrens from multibeam surveys.

  • This record provides an overview of the NESP Marine and Coastal Hub scoping study - "Research needs for assessment and monitoring of nutrients, chemicals and antimicrobials in the marine environment". No data outputs were generated by this project. -------------------- Coastal water quality is threatened by an increasing volume of chemicals produced and used in our modern lives. These chemicals are commonly incorporated into pharmaceuticals and household items, and subsequently discharged into coastal areas from a broad range of point sources. Recently emerging contaminants include a variety of chemical (e.g. heavy metals, pharmaceuticals, pesticides, nutrients) and microbiological (e.g. pathogens, antibiotic resistant microbes) sources that are discharged in sewage, stormwater, estuarine flows and industrial wastes. For many of these chemicals, our understanding of their environmental concentrations and biological effects is limited. When new scientific information emerges to suggest that a particular contaminant may be hazardous, this is refered to as a contaminant of emerging concern (CEC). There is limited data about the environmental occurrence and biological effects of CECs, but emerging research suggests they have the capacity to be toxic. With an increasing list of CECs detected in the environment, important questions remain unanswered around which contaminants and scientific knowledge gaps should be prioritised. This desktop study engaged CEC stakeholders from academic research, government, water utilities, and non-government organisations to collaboratively identify priority CEC issues in Australia’s marine ecosystems. The project delivers a risk-based framework for future CEC research directions and water quality management priorities. Outputs • Final Project Report [written]

  • The goal of our study was to split the Australian maritime Exclusive Economic Zone (EEZ) into a set of smaller acoustic zones, whereby each zone is characterised by a set of environmental parameters that vary more across than within zones. The environmental parameters chosen reflect the hydroacoustic (e.g., water column sound speed profile), geoacoustic (e.g., sound speeds and absorption coefficients for compressional and shear waves), and bathymetric (i.e., seafloor depth and slope) parameters that directly affect the way in which sound propagates. Mean zone parameters and shape files are available for download. The zones may be used to map, for example, underwater sound from commercial shipping within the entire Australian EEZ.