Creation year

2022

18 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 18
  • Here, we hypothesize that Fe uptake rates by sea-ice algae and under-ice phytoplankton are higher than the rates reported for open ocean phytoplankton in the SO. We performed 55Fe and carbon (14C) short-term uptake field measurements in, on and under Antarctic sea ice. We collected under ice seawater, melted snow and sea-ice cores. We then spiked them with 14C or 55Fe radiotracers to measure Fe and C uptake rates by sea-ice algae. Samples were then filtered, and residual radioactivity on the filters measured liquid scintillation counter (Packard).

  • The imagery provides representative and highlight clips from the quantitative sampling of the abundance, body size and diversity of demersal fishes baited remote underwater stereo video (stereo BRUV) in and around Tasman Fracture, Huon and Freycinet Australia Marine Parks (AMPs). The dataset allows examination of changes in fish communities over time as part of ongoing monitoring of these AMPs. There are plans for ongoing surveys as part of Parks Australia's management of the AMPs. The methods and key findings of the work are described in detail in Monk et al. (2016) and Perkins et al. (2022).

  • We undertook a review of peer-reviewed publications focusing on coastal and marine microplastics relevant to South Eastern Australia (South Australia, Victoria, and New South Wales), as well as from ongoing citizen science programmes from AUSMAP. Here we summarise the location of the studies on microplastics, if the study focused on water, sediment or biota, and the DOI of the publication.

  • The recruitment of mussels and microphytobenthic (MPB) algae to 28 experimental artificial reefs supporting different patch sizes and density of kelp (Ecklonia radiata) off Maria Island, Tasmania. The recruitment of mussels was assessed using rope fibre habitats, and the recruitment of MPB algae was assessed using microscope slides, positioned across the artificial reef and collected in November 2015. These data were collected to examine how the patch size and density of kelp influences the establishment of MPB algae and mussels.

  • An increasing number of studies are considering Fe and ligand concentrations, providing data of trace element availability across the remote Southern Ocean region (Ardiningsih et al., 2021, Gerringa et al., 2020, Hassler et al., 2017, Thuroczy et al., 2012, Thuroczy et al., 2011, Caprara et al., 2016 and references therein). However, studies seldom focus on polar coastal environments which are especially sensitive to climate-induced changes. To anticipate how these changes may impact Fe availability, we must first understand the drivers of ligand supply to the Antarctic coast and offshore. The newly compiled Southern Ocean Ligand (SOLt) Collection includes all publicly available Fe complexation datasets for the Southern Ocean including dissolved Fe concentrations, Fe-binding ligand concentrations, and complexation capacities for 25 studies between 1995 - 2019.

  • Efforts to restore Posidonia seagrass meadows in NSW are reliant on collecting beachcast fragments as collection of donor material from extant beds is prohibited. However, to maximise the collection efforts it necessary to understand where to collect fragments from and what environmental conditions (e.g. wind direction, wind strength, tidal height) increase the availability of fragments and where to collect the most healthy fragments. This data set captures the abundance of fragments at 7 sites in Gamay (Botany Bay), an area of interest for restoration of Posidonia australis. It investigates how characteristics of wind (speed and direction), tidal height and swell (height, direction) influence the availability (abundance) and health (as determined by observations of necrosis) of shoots at sites throughout Botany Bay. The Excel data workbook is comprised of two sheets: Fragments_data sheet shows the number of P. australis fragments collected at different sites, when they were collected, and the environmental conditions at collection (see data attributes section). Shoot_data sheet shows the proportion of necrosis of shoots attached to collected fragments.

  • This data is from the 2021 Seeds for Snapper season which is a community volunteer seed based seagrass restoration program located in Perth, Western Australia. It details the effort that went into the collection of Posidonia australis seagrass fruit including number of divers, number of shore support personnel, volunteered hours, and fruit collection metrics (volume, estimated number).

  • In March 2020 UWA and the Malgana Rangers transplanted by hand 36 pieces of Posidonia australis and Amphibolis antarctica into nearby restoration plots at Dubaut Point, Shark Bay. In March 2022 UWA went back to assess survival and shoot growth which is detailed in this dataset.

  • Out-of-range observations of significant rafts of giant kelp (Macrocystis pyrifera) washing ashore in southern NSW in winter 2020. On 9 August 2020, two local marine naturalists on the south coast of New South Wales, Australia noticed a significant amount of a large unfamiliar kelp washed up on a local beach. Following some quick confirmations via phone and email, it was revealed that the unfamiliar seaweed was giant kelp (Macrocystis pyrifera): a species whose closest known populations are ~450 km away to the south (in Tasmania and western Victoria) and whose transport to New South Wales would have required oceanic rafting over several weeks and hundreds of kilometres against the prevailing south-flowing East Australian Current. Subsequent community-led searches over the following days confirmed four more locations of often-substantial amounts of giant kelp wrack, as well as many more anecdotal and unconfirmed accounts.

  • Data collected from Southern Ocean phytoplankton laboratory culture experiments to examine the effect of iron limitation on the Chlorophyll fluorescence (F) to chlorophyll (Chl) ratio. Irradiance levels at which cultures were grown are indicated by the photon flux density (PFD). Growth rates of Fe limited cultures (-Fe) relative to Fe replete cultures (+Fe) are referred to as μ / μmax (unitless).