Creation year

2022

40 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 40
  • This record provides an overview of the NESP Marine and Coastal Hub bridging study - "Aerial survey of the Southern Right Whale ‘western’ sub-population off southern Australia". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Aerial surveys of Southern Right Whales have been conducted across the southern Australian coast from Perth, WA to Ceduna, SA since 1993, as part of a long-term program to monitor their recovery. The surveys data provide a long-term population trend for this ‘western’ population, and provide an understanding of connectivity with the ‘eastern’ population as part of a national population assessment. The NESP Marine Biodiversity Hub funded the aerial surveys in 2015–2020 and the Marine and Coastal Hub funded the survey in 2021. (See Project 1.26: https://catalogue.aodn.org.au/geonetwork/srv/eng/catalog.search#/metadata/b85b2c7d-4631-477a-9217-2cae65f9cf0a) The 2022 survey ensures an uninterrupted time series in the long-term population trend data for this Endangered species. This is particularly important given the non-annual breeding cycle (typically every three years), such that annual surveys are essential to maintain an acceptable level of precision in estimating population trends and key life history parameters (calving intervals) to track the recovery of the species. Continued monitoring of the population is needed to evaluate whether there is a longer term and continuous change (in population size and calving intervals) in the population as indicated by recent sightings and population trend data. Outputs • Estimate of relative abundance and population trend compared to long-term aerial survey sightings [dataset] • Individual whale photo-identification data - 2021-22 season [imagery - published to ARWPIC] • Final technical report detailing overall numbers of southern right whales observed within the survey region, their gender (and life stage where possible) and spatial distribution of individuals [written]

  • This dataset summarises 40 years of seagrass data collection (1983-2022) within Torres Strait and the Gulf of Carpentaria. The full dataset is available through eAtlas at https://doi.org/10.26274/2CR2-JK51 and contains point and polygon packages. This record describes the meadow extent polygons at 641 individual or composite meadows. Managing seagrass resources in northern Australia requires adequate baseline information on where seagrass is (presence/absence), the mapped extent of meadows, what species are present, and date of collection. This baseline is particularly important as a reference point against which to compare seagrass loss or change through time. The scale of northern Australia and the remoteness of many seagrass meadows from human populations present a challenge for research and management agencies reporting on the state of seagrass ecological indicators. Broad-scale and repeated surveys/studies of areas are logistically and financially impractical. However seagrass data is being collected through various projects which, although designed for specific reasons, are amenable to collating a picture of the extent and state of the seagrass resource. In this project we compiled seagrass spatial data collected during surveys in Torres Strait and the Gulf of Carpentaria into a standardised form with point-specific and meadow-specific spatial and temporal information. We revisited, evaluated, simplified, standardised, and corrected individual records, including those collected several decades ago by drawing on the knowledge of one of our authors (RG Coles) who led the early seagrass data collection and mapping programs. We also incorporate new data, such as from photo records of an aerial assessment of mangroves in the Gulf of Carpentaria in 2017. This project was funded by the National Environmental Science Programme (NESP) Marine and Coastal Hub and Torres Strait Regional Authority (TSRA) in partnership with the Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University. The project follows on from TropWATER’s previous work compiling 35 years of seagrass spatial point data and 30 years of seagrass meadow extent data for the Great Barrier Reef World Heritage Area (GBRWHA) and adjacent estuaries, funded through successive NESP Tropical Water Quality Hub Projects 3.1 (2015-2016) and 5.4 (2018-2020). These data sets are now publicly available through the eAtlas data portal: https://doi.org/10.25909/y1yk-9w85 . In making this data publicly available for management, the authors and data custodians request being contacted and involved in decision making processes that incorporate this data, to ensure its limitations are fully understood. Polygons in the meadow layer are drawn from extent data collected during some surveys. Not all surveys collected meadow extent data (e.g., Torres Strait lobster surveys). The seagrass meadow layer is a composite of all the spatial polygon data we could access where meadow boundaries were mapped as part of the survey. All spatial layers were compiled into a single spatial layer using the ArcToolbox ‘merge’ function in ArcMap. Where the same meadow was surveyed multiple times as part of a long-term monitoring program, the overlapping polygons were compiled into a single polygon using the ‘merge’ function in ArcMap. Because meadows surveyed more than once were merged, there were some cases where adjacent polygons overlap each other. Meadow Data Includes: 1. Temporal survey details – Survey month and year, or a list of survey dates for meadows repeatedly sampled; 2. Survey methods; 3. Meadow persistence – Classified into three categories: a. Unknown – Unknown persistence as the meadow was surveyed less than five times; b. Enduring – Seagrass is present in the meadow ≥90% of the surveys; c. Transitory – Seagrass is present in the meadow <90% of the surveys; 4. Meadow depth – Classified into three categories: a. Intertidal – Meadow was mapped on an exposed bank during low tide, e.g. Karumba monitoring meadow; b. Subtidal – Meadow remains completely submerged during spring low tides, e.g. Dugong Sanctuary meadow; c. Intertidal-Subtidal – Meadow includes sections that expose during low tide and sections that remain completely submerged, e.g. meadows adjacent to the Thursday Island shipping channel; 5. Dominant species of the meadow based on the most recent survey; 6. Presence or absence of individual seagrass species in a meadow; 7. Meadow density categories – Seagrass meadows were classified as light, moderate, dense, variable or unknown based on the consistency of mean above-ground biomass of the dominant species among all surveys, or percent cover of all species combined (see Table 2 in Carter et al. 2022). For example, a Halophila ovalis dominated meadow would be classed as “light” if the mean meadow biomass was always <1 gram dry weight m-2 (g DW m-2) among years, “variable” if mean meadow biomass ranged from <1 - >5 g DW m-2, and “dense” if mean meadow biomass was always >5 g DW m-2 among years. For meadows with density assessments based on both percent cover (generally from older surveys) and biomass, we assessed density categories based on the biomass data as this made the assessment comparable to a greater number of meadows, and comparable to the most recent data. Meadows with only one year of data were assigned a density category based on that year but no assessment of variability could be made and these are classified as “unknown”; 8. The minimum and maximum annual mean above-ground biomass measured in g DW m-2 (+ standard error if available) for each meadow is included for meadows with >1 year of biomass data. For meadows that were only surveyed once the mean meadow biomass (+ standard error if available) is presented as the minimum and maximum biomass of the meadow. “-9999” represents meadows where no above-ground biomass data was collected.; 9. The minimum and maximum annual mean percent cover is included for each meadow with >1 year of percent cover data. For meadows that were only surveyed once the mean meadow percent cover is presented as the minimum and maximum percent cover of the meadow. Older surveys (e.g., 1986 Gulf of Carpentaria surveys) used percent cover rather than biomass. For some surveys percent cover was estimated as discrete categories or ‘data binning’ (e.g., <10% - >50%). “-9999” represents meadows where no percent cover data was collected; 10. Meadow area survey details – The minimum, maximum and total area (hectares; ha) for each meadow: a. Total area - Total area of each meadow was estimated in the GDA 1994 Geoscience Australia Lambert projection using the ‘calculate geometry’ function in ArcMap. For meadows that were mapped multiple times, meadow area represents the merged maximum extent for all surveys. 11. Minimum and maximum area – For meadows surveyed more than once the minimum and maximum annual area of the meadow was reported. For meadows that were only surveyed once the meadow area is presented as the minimum and maximum area of the meadow. Where possible, we retained area data reported in the original shapefiles (and calculated using original projections). Where area data did not exist in original shapefiles (e.g., 1986 Gulf of Carpentaria surveys), we calculated area using the ‘calculate geometry’ function in ArcMap in the GDA 1994 Geoscience Australia Lambert projection; Data custodians. Spatial Limits: Data was limited to that collected in the Gulf of Carpentaria between Cape Arnhem (Northern Territory) and Cape York (Queensland). Torres Strait data was restricted to north of Queensland’s Great Barrier Reef World Heritage Area boundary, and includes data collected along the Papua New Guinea coastline. Taxonomy: Seagrass taxonomic revision over the last couple of decades has resulted in the revision and reclassification of some tropical species. For example, Zostera capricorni has been reclassified as Zostera muelleri subsp. capricorni, Halophila minor a synonym of Halophila ovalis, and Halodule pinifolia a synonym of Halodule uninervis. Field surveys have at times grouped species that are difficult to distinguish in the field. To address these issues, we amalgamated some species into complexes: Halophila minor and Halophila ovalis are included as Halophila ovalis complex. Zostera muelleri subsp. capricorni has been abbreviated to Zostera capricorni throughout for simplicity. Data Sets: Data was limited to that collected in the Gulf of Carpentaria between Cape Arnhem (Northern Territory) and Cape York (Queensland). Torres Strait data was restricted to north of Queensland’s Great Barrier Reef World Heritage Area boundary, and includes data collected along the Papua New Guinea coastline. Further information in the data sets included in this synthesis can be found in this report: Carter A, McKenna S, Rasheed M, Taylor H, van de Wetering C, Chartrand K, Reason C, Collier C, Shepherd L, Mellors J, McKenzie L, Roelofs A, Smit N, Groom R, Barrett D, Evans S, Pitcher R, Murphy N, Duke NC, Carlisle M, David M, Lui S, Torres Strait Indigenous Rangers (led by Pearson L, Laza T, Bon A), and Coles RG (2022). Four Decades of Seagrass Spatial Data from Torres Strait and Gulf of Carpentaria. Report to the National Environmental Science Program. Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University. Limitations of the Data: Data included extends back to the mid-1980s. Large parts of the coast have not been mapped for seagrass presence since that time. Technology and methods for mapping and position fixing have improved dramatically in 40 years. This layer represents the most reliable interpretation of that early data. Not all surveys collected meadow data, including Torres Strait lobster and beche de mer surveys and Torres Strait intertidal transect monitoring collected only site data. Because of this, the meadow layer represents an underestimate of seagrass extent, particularly in deeper subtidal waters. The meadow layer should be used in conjunction with the site layer to determine where meadows have been mapped, and where seagrass surveys have occurred but no seagrass has been found. See Table 1 and Data age, Limitations and Variability section in Carter et al. (2022). Data Dictionary: Torres Strait and Gulf of Carpentaria seagrass meadows, 1984-2022 (polygon data) - ID (numeric) - Unique identifier representing a single meadow - SURVEY_NAME (text) – Name of survey location - SURVEY_DATE (text) – A list of survey date(s) for meadows repeatedly sampled; month and year - PERSISTENCE (text) – Meadow form on three categories: enduring, transitory, unknown - DEPTH (text) – Classified into three categories (intertidal, subtidal, intertidal-subtidal) - DENSITY (text) – Meadow density categories (light, moderate, dense, variable, unknown) - AREA (text) - Area of the composite meadow in a given location in hectares, represents merged maximum extent - SURVEY METHOD (text) – e.g., helicopter, walking, hovercraft, boat-based including camera, free diving, scuba diving, van Veen grab, sled net - COMMENTS (text) – Any comments for that site - CUSTODIAN (text) – Custodian/owner of the data set - NO_SURVEYS (numeric) – Number of times meadow has been surveyed - DOMINANT_SPP [DOM_SPP] (text) – The dominant species in the meadow - EA_PA (numeric) – Absence (0) or Presence (1) of Enhalus acoroides - TC_PA (numeric) – Absence (0) or Presence (1) of Thalassodendron ciliatum - TH_PA (numeric) – Absence (0) or Presence (1) of Thalassia hemprichii - CS_PA (numeric) – Absence (0) or Presence (1) of Cymodocea serrulata - CR_PA (numeric) – Absence (0) or Presence (1) of Cymodocea rotundata - ZC_PA (numeric) – Absence (0) or Presence (1) of Zostera muelleri subsp. capricorni - HU_PA (numeric) – Absence (0) or Presence (1) of Halodule uninervis - SI_PA (numeric) – Absence (0) or Presence (1) of Syringodium isoetifolium - HS_PA (numeric) – Absence (0) or Presence (1) of Halophila spinulosa - HT_PA (numeric) – Absence (0) or Presence (1) of Halophila tricostata - HO_PA (numeric) – Absence (0) or Presence (1) of Halophila ovalis - HC_PA (numeric) – Absence (0) or Presence (1) of Halophila capricorni - HD_PA (numeric) – Absence (0) or Presence (1) of Halophila decipiens - BIO_MIN (numeric) – The minimum mean meadow biomass measured in g DW m-2 for meadows sampled more than once, or -9999 where biomass data not recorded - BIO_MIN_SE (numeric) – Standard error of the minimum mean meadow biomass measured in g DW m-2, or -9999 where biomass data not recorded - BIO_MAX (numeric) – The maximum mean meadow biomass measured in g DW m-2 for meadows sampled more than once, or -9999 where biomass data not recorded - BIO_MAX_SE (numeric) – Standard error of the maximum mean meadow biomass measured in g DW m-2, or -9999 where biomass data not recorded - PER_CO_MIN (numeric) – The minimum mean meadow percent cover for meadows sampled more than once, or -9999 where percent cover data not recorded - PER_CO_MAX (numeric) – The maximum meadow percent cover for meadows sampled more than once, or -9999 where percent cover data not recorded - AREA_MIN (numeric) – The minimum area for meadows sampled more than once - AREA_MAX (numeric) – The maximum area for meadows sampled more than once

  • Categories  

    Predictions of dominant habitats were completed as part of a report funded by the NESP Marine & Coastal Hub. This report focussed on an IUCN II zone in the South-west Corner Marine Park off the 'Capes region' near Margaret River. This modelling contains data from stereo Baited Remote Underwater Video and panoramic drop camera, and was completed using the FSS-GAM package in R. Predictions are at two different scales and resolutions, one using the broad 250m resolution Geoscience Australia bathymetry and the other using a 4m resolution multibeam survey from Geoscience Australia

  • Ecosystems provide numerous services and benefits to society. While historically overlooked, these services are increasingly recognized and are now being mapped and accounted for. There are several approaches to mapping and evaluating these ecosystem services. In this report, we use two increasingly common approaches, Ocean Accounting and Welfare Economics, to evaluate ecosystem services for the Great Southern Reef. The Great Southern Reef is a network of rocky reefs dominated by temperate algal forests known as kelp. It spans over 8,000 Km of coastline and supports two thirds of the Australian population. Despite its presumed importance, there has been little work quantifying the extent and value of the ecosystem services provided by the Great Southern Reef. Through a systematic review we assessed the current state of knowledge of the ecosystem services provided by the Great Southern Reef. Using the Common International Classification of Ecosystem Services (CICES) framework, we created an overview of the ecosystem services (provisioning, regulating, and cultural) provided by the Great Southern Reef in New South Wales, Victoria, Tasmania, South Australia, and Western Australia. We then created metrics to quantify how these services benefit coastal societies in these five states. Highlight summaries include over 17 million Australians who live within 50 Km of the reef, 26 wild seaweed harvest companies, 115 tourism SCUBA operators, 1436 mapped dive sites, 18 million tourist visits each year, 16 temperate marine biology university programs, 43 books and films, key medical products, 23 tons of harvested seaweed, 1116 grams of carbon per m2 used for growth each year, 2,361 peer-reviewed scientific publications from 1976 to 2022, 186 marine protected areas, 2.16 million recreational fishers, and over 28 commercial fisheries with 20,000 tons of biomass taken each year. We then conducted economic evaluations using these biophysical values and the available information. Using a variety of approaches, we found that the total economic value of the Great Southern Reef was $11.56 billion each year. Individually the values were as follows, commercial fishing (producer surplus - $33.2 million), carbon sequestration (avoided damages - $37.8 million), nutrient cycling (avoided damages - $6,484 million), recreational fishing (consumer surplus - $1,668 million), diving and snorkelling (consumer surplus - $403 million), other recreational activities (consumer surplus $1,836 million), and the existence value (consumer surplus - $1,096 million).

  • Fish annotations of stereo Baited Remote Underwater Video and panoramic drop camera imagery, were completed as part of a report funded by the NESP Marine & Coastal Hub. This report focussed on an IUCN II zone in the South-west Corner Marine Park off the 'Capes region' near Margaret River. These data were analysed in EventMeasure using standard operating procedures for the annotation of remote stereo imagery.

  • This data is from the 2021 Seeds for Snapper season which is a community volunteer seed based seagrass restoration program located in Perth, Western Australia. It details the effort that went into the collection of Posidonia australis seagrass fruit including number of divers, number of shore support personnel, volunteered hours, and fruit collection metrics (volume, estimated number).

  • Invasive mammal eradications are widely used for managing island ecosystems. However, tracking the outcomes of such large-scale, whole ecosystem projects is challenging and costly, and monitoring all components of an ecosystem is near impossible. Instead, indicators of ecosystem change may provide more practical and integrated measures of ecosystem response to eradications. As high-order marine predators, seabirds subsidise island ecosystems with nutrients isotopically enriched in nitrogen. Invasive mammals have caused a global decline of seabirds on islands, reducing this nutrient subsidisation. Following eradications, nitrogen stable isotope analysis may provide a useful and resource-efficient indicator of ecosystem functional change on eradicated islands. However, isotope ratios are affected by a myriad of factors, with potential sources of variation being introduced by spatial and temporal variation in sampling, and within and between different taxa and ecosystem components. To correctly attribute isotopic change to post-eradication ecosystem function change, these confounding variables need to be understood. To address this need, we analysed stable isotopes of nitrogen in soil, plant, spider, and seabird guano samples collected at different distances from seabird colonies and at different stages of the short-tailed shearwater breeding cycle on six island sites around south-eastern Tasmania, Australia. Across these cool, temperate islands we detected no temporal variability in δ15N throughout the breeding season. However, there was notable spatial variability in δ15N values. The effects of seabird-derived nutrient subsidisation were highly localised with high δ15N values found inside seabird colonies and then rapidly decreasing from the colony boundary. Higher δ15N values also occurred in areas of higher burrow density within a colony. Variability in δ15N values also existed both within and between ecosystem components. Our results highlight the importance of context dependency when using ecological indicators and have important implications for the design, implementation and interpretation of studies employing stable isotopes as indicators for ecosystem change. We provide recommendations for designing future stable isotope studies on seabird islands.

  • Tidal wetlands are vulnerable to accelerated rates of sea-level rise projected by climate models. The Surface Elevation Table (SET) is a technique applied globally to assess the extent of vertical adjustment of tidal wetlands to sea-level rise over decadal timescales. This record describes the SET data from the Australian network (OzSET). This data can be used for analyzing wetlands elevation change at the study sites

  • The imagery provides representative and highlight clips from the quantitative sampling of the abundance, body size and diversity of demersal fishes baited remote underwater stereo video (stereo BRUV) in and around Tasman Fracture, Beagle, Huon and Freycinet Australian Marine Parks (AMPs). The dataset allows examination of changes in fish communities over time as part of ongoing monitoring of these AMPs. There are plans for ongoing surveys as part of Parks Australia's management of the AMPs. The methods and key findings of the work are described in detail in Monk et al. (2016) and Perkins et al. (2022).

  • Categories    

    Seagrass meadow extent and meadow-scape was mapped using two alternative approaches at Green Island, a reef clear water habitat, in the Cairns section of the Great Barrier Reef, in November 2020. Approach 1 included mapping seagrass meadow-scape using imagery captured during low spring tides with a DJI Mavic 2 Pro UAV at an altitude of 100 m, with a resolution of 2.45cm/pixel. Approach 2 used PlanetScope Dove imagery captured on 05 November 2020 coinciding as close as possible to the field-surveys from 25 to 27 November 2020, with 3.7 m x 3.7 m pixels (nadir viewing) acquired from the PlanetScope archive. This record describes meadow extent data collected using Approach 2 (PlanetScope imagery). View the original metadata record at https://doi.pangaea.de/10.1594/PANGAEA.946605 for the full data collection.