Creation year

2018

38 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 38
  • This record provides an overview of the scope and research data outputs of NESP Marine Biodiversity Hub Project E2 - "Characterising anthropogenic underwater noise to improve understanding and management of acoustic impacts to marine wildlife". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Shipping noise is a marine pollutant that contributes significantly to the marine soundscape and is a stressor of marine animals, particularly marine mammals. In Australia, the characterisation and actual impacts of shipping noise on species behaviour are not clearly understood and information is needed. This research will provide quantitative spatial and temporal maps of shipping noise to inform on noise exposure and impacts to MNES within the EEZ and in WHA’s. The outputs will provide key information to marine management agencies such as DoEE, AMSA and GBRMPA to help them meet responsibilities and obligations under international and national law and policy to minimise the impacts of shipping noise on MNES. Planned Outputs • A suite of maps of chronic shipping noise for key areas and species of concern, identifying key management areas and gross polluters. • A database of ship source spectra for predominant large vessels • A paper on improved methods or ambient noise estimation • Report on the quantification of shipping noise on Matters of National Environmental Significance • Final report on the characterisation of shipping noise in Australia

  • Categories    

    Understanding the patterns and characteristics of sedimentary deposits on the conjugate Australian-Antarctic margins is critical to reveal the Cretaceous-Cenozoic tectonic, oceanographic and climatic conditions in the basin. However, unravelling its evolution has remained difficult due to the different seismic stratigraphic interpretations on each margin and sparse drill sites. Here, for the first time, we collate all available seismic reflection profiles on both margins and use newly available offshore drilling data, to develop a consistent seismic stratigraphic framework across the Australian-Antarctic basins. We find sedimentation patterns similar in structure and thickness, prior to the onset of Antarctic glaciation, enabling the basin-wide correlation of four major sedimentary units and their depositional history. We interpret that during the warm and humid Late Cretaceous (~83-65 Ma), large onshore river systems on both Australia and Antarctica resulted in deltaic sediment deposition offshore. We interpret that the onset of clockwise bottom currents during the Early Paleogene (~58-48 Ma) formed prominent sediment drift deposits along both continental rises. We suggest that these currents strengthened and progressed farther east through the Eocene. Coevally, global cooling (<48 Ma) and progressive aridification led to a large-scale decrease in sediment input from both continents. Two major Eocene hiatuses recovered by the IODP site U1356A at the Antarctic continental slope likely formed during this pre-glacial phase of low sedimentation and strong bottom currents. Our results can be used to constrain future paleo-oceanographic modelling of this region and aid understanding of the oceanographic changes accompanying the transition from a greenhouse to icehouse world.

  • Australia has established a network of 58 marine parks within Commonwealth waters covering a total of 3.3 million square kilometres, or 40 per cent of our exclusive economic zone (excluding Australian Antarctic Territory). These parks span a range of settings, from near coastal and shelf habitats to abyssal plains. Parks Australia manages the park network through management plans that came into effect for all parks on 1 July 2018. Geoscience Australia is contributing to their management by collating and interpreting existing environmental data, and through the collection of new marine data. “Eco-narrative” documents are being developed for those parks, where sufficient information is available, delivering collations and interpretations of seafloor geomorphology, oceanography and ecology. Many of these interpretations rely on bathymetric grids and their derived products, including those in this data release. Bathymetry grids: The bathymetry of the marine parks was created by compiling and processing Geoscience Australia’s bathymetry data holding gridded at the optimum resolution depending of the vessel’s sonar system. The bathymetry of the park is illustrated by a panchromatic geotiff image, developed by combining the bathymetric data with a hillshade image. Morphological Surfaces: Geoscience Australia has developed a new marine seafloor classification scheme, which uses the two-part seafloor mapping morphology approach of Dove et al (2016). This new scheme is semi-hierarchical and the first step divides the slope of the seafloor into three Morphological Surface categories (Plain, <2°; Slope, 2-10°; Escarpment, >10°). Dove, D., Bradwell, T., Carter, G., Cotterill, C., Gafeira, J., Green, S., Krabbendam, M., Mellet, C., Stevenson, A., Stewart, H., Westhead, K., Scott, G., Guinan, J., Judge, M. Monteys, X., Elvenes, S., Baeten, N., Dolan, M., Thorsnes, T., Bjarnadóttir, L., Ottesen, D. (2016). Seabed geomorphology: a twopart classification system. British Geological Survey, Open Report OR/16/001. 13 pages. This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • Categories    

    Water samples collected on the RV Investigator Transit voyage IN2018_T01 were analysed for concentration of chlorophyll a.

  • Meta data of all tagged hammerhead sharks detailing tag dates, locations, and shark biological details.

  • NOTE THIS IS AN ARCHIVED VERSION OF THE GLOBAL FISHERIES LANDING DATA. The current version of the data is available from https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/5c4590d3-a45a-4d37-bf8b-ecd145cb356d and should be used for all future analyses from 16/01/2019. For any questions about version changes to this dataset, please contact the Point of Contact nominated in this record. Global fisheries landings supplied by a number of agencies (FAO/UN, CCAMLR, NAFO, ICES etc) are mapped to 30-min spatial cells based on the range/gradient of the reported taxon, the spatial access of the reporting country's fleets, and the original reporting area. This data is separated to industrial and non-industrial fishing and associated with types of fishing gears. Estimates of illegal, unreported and unallocated landings are included as are estimates of the weight of fisheries products discarded at sea. For appropriate records, spatial information from tuna regional management organisations and satellite-based vessel Automatic Identification System (AIS) were used to allow greater precision. Mapping the source of fisheries capture allows investigation of the impacts of fishing and the vulnerability of fishing (with its associate food security implications) to climate change impacts.

  • The CSIRO’s Oceans & Atmosphere Shallow Survey Internal Facility (SSIF) was contracted by the Institute for Marine and Antarctic Studies (IMAS) of the University of Tasmania (UTAS) in collaboration with Parks Australia, to undertake a hydrographic survey of the Boags Commonwealth Marine Reserve in the southwestern Bass Strait. This site was surveyed in conjunction with other smaller sites for Petuna Aquaculture, as part of a broader survey campaign. All of the sites covered in this campaign are located in the vicinity of the Hunter Group of Islands, off the north-western coast of Tasmania.

  • ***NOTE THIS RECORD HAS BEEN SUPERSEDED BY NESP PROJECT E2 (details below)*** Cumulative Sound Exposure Levels of shipping traffic in Australian waters was undertaken over a one year period (Sept. 2015 to Oct 2016) within the Australian Exclusive Economic Zone. A proof of concept cumulative ship noise map was developed around Australia using the Perth Canyon source spectra as the source level for different vessel type categories. Sound propagation models were then run cumulatively, integrating the time spent by ships within a grid cell over the one-year period. This record describes the proof of concept map of commercial shipping noise in Australian waters developed under NESP Project C5. Refer to final report (https://www.nespmarine.edu.au/document/quantification-risk-shipping-large-marine-fauna-across-australia-final-report) for full methodology and PDF map. The ship noise modelling demonstrated the potential for using simple and readily accessible transmission models to provide an accurate representation of shipping noise within the marine soundscape. A subsequent high resolution sound exposure map was generated under NESP Project E2. See https://catalogue.aodn.org.au/geonetwork/srv/en/metadata.show?uuid=480847b4-b692-4112-89ff-0dcef75e3b84

  • Of the ~80 EPBC-listed Threatened and Migratory marine species known to occur in the North Marine Bioregion, 16 were identified as priority species through consultation with research end-users and experts. The priority group consisted of three sawfishes, two river sharks, Dugong, two inshore dolphins, six shorebirds and two turtles. Dwarf and then Green Sawfish had the most data gaps, indicating that these were the most poorly-known of the selected priority species in the North Marine Bioregion, and as such are a priority for research. These were followed (in order of data gaps) by the other river sharks and sawfishes, inshore dolphins, Hawksbill Turtle, Dugong, Olive Ridley Turtle, and shorebirds. Research assessing the relevance and impact of pressures was identified as a gap for all species. New data identified during the project can fill data gaps for all 16 species, and the analysis of these datasets can improve the accuracy of distribution maps, but new data collection is still required for all sharks and sawfishes, Hawksbill Turtle, and inshore dolphins to improve data coverage for distribution modelling and mapping. Phase 1 of the project involved a gap analysis with identified numerous new datasets, both published and unpublished, that are currently not incorporated into SPRAT profiles and distributions (see Table 5). This provided an opportunity to begin compiling and analysing this information to fill current data gaps, as well as identify targeted research needs for the future. Phase 2 of the project built on collaboration with data custodians to develop data sharing agreements for use of these datasets to construct spatial models to refine and update species distributions. Downloadable data and materials are a linked to in the 'online resources' section of this record. GIS online maps of species distributions are available at this WMS endpoint: https://geoserver.imas.utas.edu.au/geoserver/SDM/wms?request=GetCapabilities&service=WMS

  • Relevant spatial datasets for mapping pressures were identified and collated. Pressures were categorised as resource extraction and use, pollution, habitat modification, climate, and ‘other’. Pressures included Commonwealth trawl fisheries effort, aquaculture infrastructure, location of oil and gas infrastructure, historical shipping and pollution data, location of historical seismic operations, cyclone intensity, spoil dumping, sewage outfalls, location of ports, and tourism operations. Two main pressure maps were derived i) an additive pressure hotspots map, which gives higher weight to areas with multiple pressures of high risk; and, ii) a multiplicative hotspot pressure map, which gives lower weighting to areas with multiple low risk pressures. Areas of high risk were identified, and thus possibly high benefit for management versus low risk or low associated benefit for mitigation. The information generated needs to be considered alongside robust species distribution data and interaction matrices for effective decision-making.