Creation year

2018

38 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 38
  • Categories    

    Phytoplankton was counted and identified from five sites over the 5-year period. Annual cycles in abundance are available (as cells mL-1), along with detailed species identification. Cell measurements and approximate geometric shape were also recorded for the calculation of biovolume (μL cell-1). Diatoms and dinoflagellates dominated the samples in terms of biomass, however, small cells were also very abundant throughout each year. The data are restricted to an integrated sample from the top 12 m of the water column. Fluorescence profiles elsewhere in this dataset can provide an indication of phytoplankton presence lower in the water column.

  • Meta data of all tagged hammerhead sharks detailing tag dates, locations, and shark biological details.

  • This record provides an overview of the scope and research data outputs of NESP Marine Biodiversity Hub Project E2 - "Characterising anthropogenic underwater noise to improve understanding and management of acoustic impacts to marine wildlife". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Shipping noise is a marine pollutant that contributes significantly to the marine soundscape and is a stressor of marine animals, particularly marine mammals. In Australia, the characterisation and actual impacts of shipping noise on species behaviour are not clearly understood and information is needed. This research will provide quantitative spatial and temporal maps of shipping noise to inform on noise exposure and impacts to MNES within the EEZ and in WHA’s. The outputs will provide key information to marine management agencies such as DoEE, AMSA and GBRMPA to help them meet responsibilities and obligations under international and national law and policy to minimise the impacts of shipping noise on MNES. Planned Outputs • A suite of maps of chronic shipping noise for key areas and species of concern, identifying key management areas and gross polluters. • A database of ship source spectra for predominant large vessels • A paper on improved methods or ambient noise estimation • Report on the quantification of shipping noise on Matters of National Environmental Significance • Final report on the characterisation of shipping noise in Australia

  • Categories    

    Biologically relevant macronutrients, nitrate + nitrite, silicate, phosphate and ammonia, were measured at all sites throughout the study. Nitrate + nitrite values (NOx) at the surface showed clear seasonal trends, peaking over winter and drawing down to near zero in summer and autumn. Phosphate concentrations also reached a peak in winter, which was associated with Southern Ocean influence. Median ammonium concentrations at all sites were generally <0.5 μM, with no clear peaks in any season or month. Overall, the lowest values were measured in August and other months showed reasonable spread around the median. Median silicate concentrations were consistently highest at sites 1 and 9, followed by site 5. Water from the River Derwent flows through site 1, then tracks east towards site 9 then site 5. Seasonally, silicate was generally highest in winter when the River Derwent outflow is also greatest.

  • Categories    

    Chlorophyll a concentration is widely used as a proxy to describe trends in phytoplankton biomass over spatial and temporal scales. The concentration of chlorophyll a in Storm Bay showed surprisingly little variation across the seasons. There was a gradient in concentration from site 1 to site 3, where chlorophyll a decreased slightly. It was highest and most variable at the inshore sites 1 and 9, and lowest at site 3, furthest out in the bay. There was no clear annually recurrent seasonal bloom, although data suggests higher values in spring and autumn (see later time series).

  • Categories    

    The Huon Commonwealth Marine Reserve (CMR) covers a broad depth range from the inner continental shelf at about 70 m, to abyssal depths of more than 3000 m. The majority of the area is in deep water. The Tasman Seamounts Marine Reserve that was proclaimed in 1999 has been wholly incorporated into the Huon Commonwealth marine reserve. The reserve contains a cluster of seamounts that appear as cone-shaped submerged mountains, which provide a range of depths for a diversity of plants and animals. The peaks of many of the reserve's seamounts are between 750 m and 1000 m below the sea surface and support endemic species, including large erect corals and sponges. Some of the flora and fauna are hundreds and possibly thousands of years old, making them some of the longest-lived animals on Earth. The reserve also provides an important connection between seamounts of the Indian Ocean and the Tasman Sea. This map of the geomorphology of the Huon CMR was prepared for the NESP Marine Biodiversity Hub Theme D (1) project: National data collation, synthesis and visualisation to support sustainable use, management and monitoring of marine assets.

  • Australia has established a network of 58 marine parks within Commonwealth waters covering a total of 3.3 million square kilometres, or 40 per cent of our exclusive economic zone (excluding Australian Antarctic Territory). These parks span a range of settings, from near coastal and shelf habitats to abyssal plains. Parks Australia manages the park network through management plans that came into effect for all parks on 1 July 2018. Geoscience Australia is contributing to their management by collating and interpreting existing environmental data, and through the collection of new marine data. “Eco-narrative” documents are being developed for those parks, where sufficient information is available, delivering collations and interpretations of seafloor geomorphology, oceanography and ecology. Many of these interpretations rely on bathymetric grids and their derived products, including those in this data release. Bathymetry grids: The bathymetry of the marine parks was created by compiling and processing Geoscience Australia’s bathymetry data holding gridded at the optimum resolution depending of the vessel’s sonar system. The bathymetry of the park is illustrated by a panchromatic geotiff image, developed by combining the bathymetric data with a hillshade image. Morphological Surfaces: Geoscience Australia has developed a new marine seafloor classification scheme, which uses the two-part seafloor mapping morphology approach of Dove et al (2016). This new scheme is semi-hierarchical and the first step divides the slope of the seafloor into three Morphological Surface categories (Plain, <2°; Slope, 2-10°; Escarpment, >10°). Dove, D., Bradwell, T., Carter, G., Cotterill, C., Gafeira, J., Green, S., Krabbendam, M., Mellet, C., Stevenson, A., Stewart, H., Westhead, K., Scott, G., Guinan, J., Judge, M. Monteys, X., Elvenes, S., Baeten, N., Dolan, M., Thorsnes, T., Bjarnadóttir, L., Ottesen, D. (2016). Seabed geomorphology: a twopart classification system. British Geological Survey, Open Report OR/16/001. 13 pages. This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • Australia has established a network of 58 marine parks within Commonwealth waters covering a total of 3.3 million square kilometres, or 40 per cent of our exclusive economic zone (excluding Australian Antarctic Territory). These parks span a range of settings, from near coastal and shelf habitats to abyssal plains. Parks Australia manages the park network through management plans that came into effect for all parks on 1 July 2018. Geoscience Australia is contributing to their management by collating and interpreting existing environmental data, and through the collection of new data. This includes compiling existing bathymetry datasets for select marine parks. This dataset includes a compilation of multibeam sonar bathymetry (gridded to 100 m spatial resolution) for Bremer Marine Park, in the South-west Marine Park Network. The park incorporates Bremer Canyon and adjacent smaller canyons that incise the continental slope and outer shelf. This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • These data were collected on Southern Surveyor transit voyage SS2013_T01 from Sydney to Hobart in February 2013. The voyage was a teaching voyage as part of KSA724. Masters students participated in the collection of standard oceanographic data, focusing on eddies of the East Australian Current. This dataset includes for reference the nutrient and hydrography bottle data as produced by the Marine National Facility, as well as the fluorometrically determined extracted chlorophyll concentration

  • ***NOTE THIS RECORD HAS BEEN SUPERSEDED BY NESP PROJECT E2 (details below)*** Cumulative Sound Exposure Levels of shipping traffic in Australian waters was undertaken over a one year period (Sept. 2015 to Oct 2016) within the Australian Exclusive Economic Zone. A proof of concept cumulative ship noise map was developed around Australia using the Perth Canyon source spectra as the source level for different vessel type categories. Sound propagation models were then run cumulatively, integrating the time spent by ships within a grid cell over the one-year period. This record describes the proof of concept map of commercial shipping noise in Australian waters developed under NESP Project C5. Refer to final report (https://www.nespmarine.edu.au/document/quantification-risk-shipping-large-marine-fauna-across-australia-final-report) for full methodology and PDF map. The ship noise modelling demonstrated the potential for using simple and readily accessible transmission models to provide an accurate representation of shipping noise within the marine soundscape. A subsequent high resolution sound exposure map was generated under NESP Project E2. See https://catalogue.aodn.org.au/geonetwork/srv/en/metadata.show?uuid=480847b4-b692-4112-89ff-0dcef75e3b84