Creation year


38 record(s)
Type of resources
Contact for the resource
Provided by
From 1 - 10 / 38
  • Categories    

    The Huon Commonwealth Marine Reserve (CMR) covers a broad depth range from the inner continental shelf at about 70 m, to abyssal depths of more than 3000 m. The majority of the area is in deep water. The Tasman Seamounts Marine Reserve that was proclaimed in 1999 has been wholly incorporated into the Huon Commonwealth marine reserve. The reserve contains a cluster of seamounts that appear as cone-shaped submerged mountains, which provide a range of depths for a diversity of plants and animals. The peaks of many of the reserve's seamounts are between 750 m and 1000 m below the sea surface and support endemic species, including large erect corals and sponges. Some of the flora and fauna are hundreds and possibly thousands of years old, making them some of the longest-lived animals on Earth. The reserve also provides an important connection between seamounts of the Indian Ocean and the Tasman Sea. This map of the geomorphology of the Huon CMR was prepared for the NESP Marine Biodiversity Hub Theme D (1) project: National data collation, synthesis and visualisation to support sustainable use, management and monitoring of marine assets.

  • These data were collected on Southern Surveyor transit voyage SS2013_T01 from Sydney to Hobart in February 2013. The voyage was a teaching voyage as part of KSA724. Masters students participated in the collection of standard oceanographic data, focusing on eddies of the East Australian Current. This dataset includes for reference the nutrient and hydrography bottle data as produced by the Marine National Facility, as well as the fluorometrically determined extracted chlorophyll concentration

  • Seven case study locations (Keep, Daly, Roper, McArthur, Flinders, and Gilbert River estuaries, and Darwin Harbour) were used to test the utility of the Australian Landsat data archive in the Digital Earth Australia analysis platform for characterising and monitoring the condition and change in coastal habitats. A suite of analyses was undertaken including: assessing the extent of different coastal habitats, detecting coastal change including change in mangrove communities, and the distribution of intertidal areas. The work was successful in: (a) generating baseline information for the case study areas; and, (b) developing valuable monitoring tools for future use.

  • Comprehensive baseline environmental data for Storm Bay in south eastern Tasmania were required to inform the salmonid industry regarding site selection, to provide background environmental data before large-scale farming commences, and to support the development of a scientifically relevant and cost-effective environmental monitoring program. Storm Bay is a large deep bay that receives freshwater inflow from the River Derwent on its north-western boundary and exchanges water with Frederick Henry Bay on its north-eastern boundary. The eastern and western boundaries are defined by the Tasman Peninsula and Bruny Island, respectively, and the southern boundary connects with the Tasman Sea. This area is a mixing zone between the River Derwent outflow and oceanic waters. The oceanography in Storm Bay is complex and is characterized by considerable fluctuations in temperature, salinity and nutrients on variable temporal and spatial scales. This is due to the southerly extension of warm nutrient-depleted sub-tropical waters transported via the East Australian Current (EAC) down the east coast of Tasmania over summer, whilst the south and south-west coasts are influenced by cooler, nutrient-rich sub-Antarctic waters from the south and the Leeuwin Current from the north-west (Buchanan et al. 2014). The current project arose in response to the salmon aquaculture industry recognising the need for increased scientific knowledge to support ecologically sustainable development of Atlantic salmon (Salmo salar) farming operations in south-eastern Tasmania, particularly expansion into Storm Bay. The information provided will assist salmon companies to manage their operations in Storm Bay under varying environmental conditions. Our research has also provided the opportunity to investigate changes in water quality over a quarter of a century, as CSIRO investigated seasonal and inter-annual variability in chemical and biological parameters in Storm Bay during 1985-89. We sampled at the same “master station” in Storm Bay as CSIRO and used similar procedures where possible. Five sites were sampled monthly in Storm Bay for over five years from November 2009 to April 2015, except on rare occasions when weather conditions were unsuitable, and bimonthly at times in 2013 when external funding was not available. Site 1 was located at the mouth of the Derwent estuary and the entrance to Storm Bay, site 2 was in the same location as the ‘master site’ of a CSIRO study in 1985-88, site 3 was furthest offshore and provided the most information on oceanic currents influencing the bay, while sites 5 and 6 were requested by the salmon aquaculture industry as potential sites for expansion of salmon farming. Site 4 was further offshore and monitoring at this site was discontinued after three months because of insufficient time to collect samples from all sites in one day. An additional site, 9, at the entrance to Frederick Henry Bay was included from 18 July 2011 at the request of the Marine Farming Branch, Department of Primary Industries, Parks, Water and Environment (DPIPWE), to provide information on water quality coming from Frederick Henry Bay. Adjacent to, and largely unaffected by the River Derwent, Frederick Henry Bay is a large marine embayment with limited freshwater input from the Coal River at its northern boundary. ---------------------------------------------- See child records linked to this parent record for specific context and methodologies for each of the monitoring variables (phytoplankton, zooplankton, chlorophyll, pigment, nutrients, oceanography).

  • Categories    

    Phytoplankton was counted and identified from five sites over the 5-year period. Annual cycles in abundance are available (as cells mL-1), along with detailed species identification. Cell measurements and approximate geometric shape were also recorded for the calculation of biovolume (μL cell-1). Diatoms and dinoflagellates dominated the samples in terms of biomass, however, small cells were also very abundant throughout each year. The data are restricted to an integrated sample from the top 12 m of the water column. Fluorescence profiles elsewhere in this dataset can provide an indication of phytoplankton presence lower in the water column.

  • Categories    

    Water temperature, averaged across the water column, in Storm Bay followed a distinct seasonal cycle each year, reaching a low of 9 °C and a high of ~ 19 °C. Warmest temperatures were in February, followed by a gradual cooling throughout autumn to a winter minimum in August, then increasing again during spring. Across the sites, the median temperature varied little, with site 3, the most marine of the sites, showing the least spread in values. Median salinity varied little across Storm Bay, being slightly higher at sites 3 and 6, highlighting the marine nature of site 3 and the patterns of seawater circulation in Storm Bay. The lowest salinities were recorded at site 1, where less saline surface waters flow into the bay from the Derwent Estuary. Seasonally, salinity was highest in autumn, with slightly fresher water present in Storm Bay in spring. Some lower salinity values were recorded in July and August, suggesting the presence of less saline subantarctic water flowing into the bay, or freshwater flow from the Derwent. Glider transects show slight lower salinity in summer, then mild stratification in autumn to spring, especially in the shallow regions near the mouth of the Derwent.

  • Categories    

    Water samples collected on the RV Investigator Transit voyage IN2018_T01 were analysed for concentration of chlorophyll a.

  • This record provides an overview of the scope and research data outputs of NESP Marine Biodiversity Hub Project E4 - "Recreational fishing in Commonwealth waters". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Recent assessment have suggested that Australian marine recreational fishers (MRF) are moving further offshore in pursuit of fishing opportunities, which places them in areas managed by the Australian Government. As recreational fishers are key stakeholders in marine management, of MRF effort, catch, motivations and values are required to effectively inform administration of Australian Marine Parks (AMPs) and fisheries. In 2018 the use of exiting MRF state-wide assessment was trialled in WA and NSW to quantify fishing within the Hunter and Ningaloo AMPs. In 2019 this work will be extended to analyse state charter-boat MRF datasets with a particular emphasis on our selected AMPs and the Perth Canyon AMP. Planned Outputs • State of knowledge and gap analysis of recreational fishing in Commonwealth waters (spatial data) • On ground motivation and targets by active fishers of AMP [report]

  • Water level heights were measured every 5 minutes at five station locations in the 70km length Tamar estuary, Tasmania, for six months. Pressure loggers deployed in the water recorded total pressure and the inverse barometer effect was accounted for by two additional pressure loggers deployed above ground within 15km of a station. The data include barometric pressure, water temperature, and water level relative to Australian Height Datum (AHD83). The data captures tidal amplification and asymmetry between ebb and flood tides in the estuary for the purpose of a research project completed in 2018 by Karen Palmer. Based on the Tamar estuary model created for NRM North by BMT WBM Pty Ltd using TUFLOW FV (with permission), a new hydrodynamic model was created and calibrated with observed water levels. Different scenarios of sea level rise and bathymetry change were then simulated to model the effects on tidal amplitude and phase.

  • Categories    

    The Tasman Fracture Commonwealth Reserve complements the Port Davey Marine Reserve (encompassing Port Davey, Bathurst Channel and Bathurst Harbour), which was proclaimed by the Tasmanian Government in 2005. It spans the continental shelf, continental slope and deeper water ecosystems south of Tasmania, and is scored by steep canyons. It also encloses other geological features, including steep escarpments and troughs, saddles, basins, and part of a plateau that is over 400 km long and rises up to 3 km above the sea floor. The reserve includes a number of undersea peaks rising to less than 1500 m below the sea surface that provide habitat to deepwater hard corals. These corals provide a structure and habitat for a rich diversity of marine invertebrate animals that live attached corals. This record describes a geomorphology map for the Tasman Fracture CMR that was prepared using bathymetry and backscatter data sourced from CSIRO and Geoscience Australia.