research vessel
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
Bathymetry and Side Scan Sonar transects taken in various project locations within South Australian state waters. For analysis of seabed topography and interpretation of benthic substrate and flora.
-
Point data collected from video drops identifying benthic habitats such as seagrass, macroalgae and reef, collected during field work in 2007 to 2011. Used to support the Benthic Habitat Mapping project undertaken by DENR to map the nearshore benthic habitats of South Australia
-
The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including the Capes region of southwest Western Australia. The area is one of the most diverse temperate marine environments in Australia. Warm, tropical waters of the Leeuwin Current mingle with the cool waters of the Capes Current, resulting in high finfish diversity, including tropical and temperate species, as well as internationally significant seagrass diversity with meadows occurring at depths greater than 40 metres. The region's geomorphology is complex with an array of intertidal and subtidal reef environments. Many marine plants and animals are endemic to the southern coast of Australia due to its long geographical isolation, with seagrass, algae and estuarine habitats functioning as spawning, nursery and feeding grounds for a wide range of invertebrates and fish. Significant numbers of marine mammals also frequent the area, including the blue whale, the largest of all marine creatures.
-
The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including Point Ann, a site which lies within the Fitzgerald Biosphere, a UNESCO designated International Biosphere Reserve and one of the largest and biologically significant National Parks in Australia (DEC) on West Australia’s south coast, approximately 180km east of Albany.
-
A comprehensive and detailed multibeam sonar-based map of the shelf-break region of the Central Flinders Commonwealth Marine Reserve (CMR). It illustrates the extent that several canyon-head incisions are present in this region, and that inset from the shelf-break is a relatively extensive area of cross-shelf reef. Some of the canyon-head incisions are characterised by exposed reef areas, and these are indicated by localised regions of rapid change in depth. The cross-shelf reef is generally very low profile, but characterised by distinct reef ledges where bedding planes in the sedimentary rock types have eroded. These ledges, often between 1-2 m in height, can run for several kilometres as distinct features. The method of data extraction is based on Lucieer (2013). Three are three classes of seafloor map- one from GEOBIA, one from digitisation and one from Probability of Hardness based on Angular Profile Correction. Lucieer, V (2013) NERP broad-scale analysis of multibeam acoustic data from the Flinders Commonwealth Marine Reserve, Prepared for the National Environmental Research Program. Internal report. IMAS, Hobart, TAS [Contract Report]
-
The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including Broke Inlet, a relatively remote area 400km south of Perth, between the towns of Augusta and Albany. The nearest major town, Manjimup, is situated 100km north and the small coastal settlement Windy Harbour approximately 30km west of Broke Inlet. The Inlet is entirely surrounded by the D’Entrecasteaux National Park, which is accessible via a sealed road and attracts limited ‘through-traffic’ to the area. The marine environment off Broke is one fairly untouched by major tourism pressures and thus this location was selected due to its relative inaccessibility.
-
Bathymetric contours (5 m interval) for Tasmanian coastal waters from the LWM (Low water mark) to 40 metres in depth or 1.5 kms from shore (whichever boundary is first identified). Detailed bathymetric contours were developed to be used to fulfill coastal management objectives according to The Living Marine Resources Act 1995.
-
This data was collected to improve our knowledge and understanding of the marine environment in the upper reaches of East and Middle Arms (Darwin Harbour), to assist planning and sustainable development for the new township. Data provide polygon data that map the benthic habitats (12 physical and biological categories) in the upper reaches of the harbour using remote-sensed and survey data. This dataset is being continually updated and is current as of 03/03/2016.
-
The Tasman Fracture Commonwealth Reserve complements the Port Davey Marine Reserve (encompassing Port Davey, Bathurst Channel and Bathurst Harbour), which was proclaimed by the Tasmanian Government in 2005. It spans the continental shelf, continental slope and deeper water ecosystems south of Tasmania, and is scored by steep canyons. It also encloses other geological features, including steep escarpments and troughs, saddles, basins, and part of a plateau that is over 400 km long and rises up to 3 km above the sea floor. The reserve includes a number of undersea peaks rising to less than 1500 m below the sea surface that provide habitat to deepwater hard corals. These corals provide a structure and habitat for a rich diversity of marine invertebrate animals that live attached corals. This record describes a geomorphology map for the Tasman Fracture CMR that was prepared using bathymetry and backscatter data sourced from CSIRO and Geoscience Australia.
-
The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including Jurien Bay. The Jurien Bay marine environment is highly diverse, and is home to a wide variety of species, including sea lions and sea birds on the many offshore islands. Limestone reef and seagrass habitats in the area support a diverse fish and invertebrate fauna, and a local crayfishing industry is based around the Western Rock Lobster (Panulirus cygnus).
IMAS Metadata Catalogue