Keyword

EARTH SCIENCE | BIOSPHERE | ECOSYSTEMS | MARINE ECOSYSTEMS

56 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 56
  • This resource contains access links to all data collected and and created under the ACE-CRC program. See 'online resources' section of this record for index of all online ACE-CRC data.

  • Voyage IN2019_V04 contributed an additional 29,000 kms2 of seafloor survey data to the Coral Sea knowledge base. From this new bathymetric data individual seamounts have been extracted and have been classified to the Geoscience Australia Geomorphology Classification Scheme. This dataset contains two layers representing the classification layers- 1) Surface (Plain, Slope, Escarpment) and 2) fine scale Geomorphology of the seamount for the Fregetta Seamount. Ongoing research with this survey data will provide new insights into the detailed geomorphic shape and spatial relationships between adjacent seabed features. This information will be released in future publications to show the potential of how the scale of such seafloor data can be used for predictive habitat modelling when analysed with the biological data overlays.

  • Voyage IN2019_V04 contributed an additional 29,000 kms2 of seafloor survey data to the Coral Sea knowledge base. From this new bathymetric data individual seamounts have been extracted and have been classified to the Geoscience Australia Geomorphology Classification Scheme. This dataset contains two layers representing the classification layers- 1) Surface (Plain, Slope, Escarpment) and 2) fine scale Geomorphology of the seamount for the Sula Seamount. Ongoing research with this survey data will provide new insights into the detailed geomorphic shape and spatial relationships between adjacent seabed features. This information will be released in future publications to show the potential of how the scale of such seafloor data can be used for predictive habitat modelling when analysed with the biological data overlays.

  • Voyage IN2019_V04 contributed an additional 29,000 kms2 of seafloor survey data to the Coral Sea knowledge base. From this new bathymetric data individual seamounts have been extracted and have been classified to the Geoscience Australia Geomorphology Classification Scheme. This dataset contains two layers representing the classification layers- 1) Surface (Plain, Slope, Escarpment) and 2) fine scale Geomorphology of the seamount for the Mellish Seamount. Ongoing research with this survey data will provide new insights into the detailed geomorphic shape and spatial relationships between adjacent seabed features. This information will be released in future publications to show the potential of how the scale of such seafloor data can be used for predictive habitat modelling when analysed with the biological data overlays.

  • This dataset comprises summaries of sight and resight data compiled for the NESP MBH project A13 and derived from data housed in the Australian Right Whale Photo Identification Catalogue (ARWPIC) and associated effort summaries. These summaries have been compiled as part of an analysis of mark recapture information in establishing trends in the population and spatial connectivity of individuals across southern Australia. The summaries are based on original sightings data collected across 1990-2018 by ARWPIC partners. The ARWPIC is housed at the Australian Antarctic Division and managed by the Australian Marine Mammal Centre.

  • Voyage IN2019_V04 contributed an additional 29,000 kms2 of seafloor survey data to the Coral Sea knowledge base. From this new bathymetric data individual seamounts have been extracted and have been classified to the Geoscience Australia Geomorphology Classification Scheme. This dataset contains two layers representing the classification layers- 1) Surface (Plain, Slope, Escarpment) and 2) fine scale Geomorphology of the seamount for the Calder Seamount. Ongoing research with this survey data will provide new insights into the detailed geomorphic shape and spatial relationships between adjacent seabed features. This information will be released in future publications to show the potential of how the scale of such seafloor data can be used for predictive habitat modelling when analysed with the biological data overlays.

  • Voyage IN2019_V04 contributed an additional 29,000 kms2 of seafloor survey data to the Coral Sea knowledge base. From this new bathymetric data individual seamounts have been extracted and have been classified to the Geoscience Australia Geomorphology Classification Scheme. This dataset contains two layers representing the classification layers- 1) Surface (Plain, Slope, Escarpment) and 2) fine scale Geomorphology of the seamount for the Kenn Seamount. Ongoing research with this survey data will provide new insights into the detailed geomorphic shape and spatial relationships between adjacent seabed features. This information will be released in future publications to show the potential of how the scale of such seafloor data can be used for predictive habitat modelling when analysed with the biological data overlays.

  • Voyage IN2019_V04 contributed an additional 29,000 kms2 of seafloor survey data to the Coral Sea knowledge base. From this new bathymetric data individual seamounts have been extracted and have been classified to the Geoscience Australia Geomorphology Classification Scheme. This dataset contains two layers representing the classification layers- 1) Surface (Plain, Slope, Escarpment) and 2) fine scale Geomorphology of the seamount for the Lexington Seamount. Ongoing research with this survey data will provide new insights into the detailed geomorphic shape and spatial relationships between adjacent seabed features. This information will be released in future publications to show the potential of how the scale of such seafloor data can be used for predictive habitat modelling when analysed with the biological data overlays.

  • We undertook a review of peer-reviewed publications focusing on coastal and marine microplastics relevant to South Eastern Australia (South Australia, Victoria, and New South Wales), as well as from ongoing citizen science programmes from AUSMAP. Here we summarise the location of the studies on microplastics, if the study focused on water, sediment or biota, and the DOI of the publication.

  • Voyage IN2019_V04 contributed an additional 29,000 kms2 of seafloor survey data to the Coral Sea knowledge base. From this new bathymetric data individual seamounts have been extracted and have been classified to the Geoscience Australia Geomorphology Classification Scheme. This dataset contains two layers representing the classification layers- 1) Surface (Plain, Slope, Escarpment) and 2) fine scale Geomorphology of the seamount for the Cassowary Seamount. Ongoing research with this survey data will provide new insights into the detailed geomorphic shape and spatial relationships between adjacent seabed features. This information will be released in future publications to show the potential of how the scale of such seafloor data can be used for predictive habitat modelling when analysed with the biological data overlays.