National Environmental Science Program (NESP) Marine and Coastal Hub
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
This metadata record provides a brief overview of the National Environmental Science Program (NESP) Marine and Coastal (MaC) Hub. The record acts as an aggregation point for all NESP Marine and Coastal Hub data collections and projects developed as part of this research program. The National Environmental Science Program (NESP) is a long-term commitment by the Australian Government to environment and climate research. The first phase invested $145 million (2014-15 to 2020-21) into 6 research hubs. The second phase invests $149 million (2020-21 to 2026-27) into 4 new research hubs. The program builds on its predecessors – the National Environmental Research Program (NERP) and the Australian Climate Change Science Programme (ACCSP) – to support decision-makers to understand, manage and conserve Australia’s environment by funding world-class biodiversity and climate science. The Marine and Coastal Hub is a collaborative partnership supported by funding from the Australian Government administered by the Department of Climate Change, the Environment, Energy and Water (DCCEEW) - previously Department of Agriculture, Water and the Environment (DAWE). The current NESP funding program runs from 2021 to 2027. The Marine and Coastal Hub is co-administered by the University of Tasmania (UTAS), and the Reef and Rainforest Research Centre (RRRC). The Marine and Coastal Hub delivers: • applied research to support management of Australia’s marine and coastal environments including estuaries, coast, reefs, shelf and deep-water • targeted biodiversity and taxonomy products to support efficient system monitoring • environmental monitoring systems and decision-support tools. Research products from the NESP Marine and Coastal Hub are available from https://nespmarinecoastal.edu.au and the Australian Ocean Data Network catalogue (http://catalogue.aodn.org.au)
-
A review of peer-reviewed publications was undertaken, focusing on coastal and marine microplastics relevant to South Eastern Australia (South Australia, Victoria, and New South Wales), as well as from ongoing citizen science programmes from AUSMAP (https://www.ausmap.org/). This dataset summarises basic information about the microplastics studies: the location of the study; if the study focused on water, sediment or biota; the type of biota (for biotic studies); and the DOI of the publication. Although the primary focus of this study was restricted to southeastern Australia, studies collated from other regions have also been included in this dataset. The outcomes of the literature review for other regions (QLD, NT, SA, WA, Tas) should not be considered comprehensive.
-
This record provides an overview of the NESP Marine and Coastal Hub small-scale study - "A national framework for improving seagrass restoration". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Seagrasses provide resources and ecosystem services critical to the health of coastal ecosystems and human populations. They increase water clarity, stabilise sediments and reduce coastal erosion, sequester carbon, and provide habitat and food to marine animals, including commercially important fish and invertebrates. Across Australia, the loss of >275,000 ha of seagrass meadows and associated ecosystem services—valued at AU$ 5.3 billion—has contributed to the long-term degradation of estuarine and coastal marine ecosystems. Restoration of seagrass is critical for improving the health and function of these ecosystems and sustaining coastal communities and industries that depend on them, yet restoration projects to date typically occur at small scales, driven by local priorities and with variable success. This project addressed this problem by bringing together scientists and key stakeholders to collate knowledge on seagrass ecology and restoration, and generated a framework to scaling-up restoration nationally. A national workshop with experts identified a shortlist of drivers key to restoration success, including sediment dynamics, microbial communities, hydrodynamics, and species interactions. It highlighted the importance of incorporating seagrass genetics and life histories into site and donor material selection to improve long-term resilience. New technologies such as eDNA, automation, and AI were also assessed for their potential to improve monitoring and reduce costs, while standardised methodologies and molecular tools were recommended to track microbial indicators and site suitability. A key insight from the workshop was the central role of sediment processes in feedback loops that determine seagrass health—providing a foundation for more effective, scalable restoration strategies. On-ground case studies were conducted in Western Australia and New South Wales to test the proposed restoration framework in collaboration with Indigenous and community partners: sediment quality assessment and manipulation (Gamay Rangers, UNSW); seed and seedling capture using sediment-filled hessian tubes (Malgana Rangers, UWA); and large-scale seed collection for seed-based restoration through the 'Seeds for Snapper' initiative (OzFish and UWA). These trials demonstrated the effectiveness of community-led restoration and reinforced the potential of seed-based methods for scaling up seagrass recovery. Outputs • Effect of sediment quality and manipulation on seagrass transplant success [field data] • Locations and health of beachcast fragments of Posidonia in Botany Bay [field data] • Effect of engineering hydrodynamics (by use of hessian socks) on seagrass transplant success [field data] • Final project report [written]
-
This record provides an overview of the NESP Marine and Coastal Hub small-scale study - "Towards a consolidated and open-science framework for restoration monitoring". No data outputs were generated by this project. -------------------- Coastal habitat restoration is scaling up rapidly in Australia and covers a range of diverse ecosystems including oyster reefs, seagrass meadows, mangrove forests, kelp forests, and saltmarshes. While monitoring is commonly included in these projects, approaches are often uncoordinated, inconsistently funded, and rarely follow open science protocols. Previous NESP-funded projects have advanced understanding of the ecology and service provision of threatened ecosystems and established targets for repair based on reference conditions (e.g. Marine Biodiversity Hub project B4). They also created a national database of marine and coastal restoration projects (Australian Coastal Restoration Network: project E5) and supported the development of monitoring, evaluation, reporting and improvement (MERI) systems across various sectors. Building on this foundation, the current project synthesised monitoring approaches across multiple habitat types by drawing on the collective expertise of Australian researchers. It also explored the integration of emerging technologies—such as automation, artificial intelligence, and eDNA—to improve monitoring efficiency and cost-effectiveness. The primary output of this project is a coordinated, open-science monitoring framework that incorporates clearly defined restoration goals and a core set of universal variables. Developed through expert consultation, the framework supports consistent benchmarking across projects while accommodating habitat-specific and goal-driven metrics. The framework promotes data accessibility, standardised definitions, and the integration of new technologies to streamline the development of future restoration projects and maximise the value of restoration monitoring. Outputs • Best-practice toolkit / final project report [written]
-
This data is from the 2021 'Seeds for Snapper' season which is a community volunteer seed based seagrass restoration program located in Perth, Western Australia. It details the effort that went into the collection of Posidonia australis seagrass fruit including number of divers, number of shore support personnel, volunteered hours, and fruit collection metrics (volume, estimated number).
-
This record provides an overview of the NESP Marine and Coastal Hub small-scale study - "Quantifying the ecosystem services of the Great Southern Reef". For specific data outputs from this project, please see child records associated with this metadata. -------------------- The Great Southern Reef (GSR) is an 8,000 km network of temperate rocky reefs stretching from Western Australia to New South Wales. Dominated by kelp forests, it is one of the world’s most biodiverse and productive marine ecosystems, supporting important fisheries, tourism, cultural values, and ecological functions. Despite its significance, kelp forests are in decline due to ocean warming, marine heatwaves, pollution, and expanding herbivore populations—threatening both biodiversity and the services these reefs provide. Evidence-based management is hindered without accurate estimates of the GSR's contribution to society and the economy. This project delivered the first systematic synthesis of existing data on the ecosystem services and economic value of the GSR, focusing on shallow reefs (0–50 m). Market and non-market services—such as commercial and recreational fishing, tourism, carbon sequestration, and existence value—were assessed for each state in which the GSR occurs. The synthesis highlighted the high societal dependence on the GSR, with over 17 million Australians living within 50 km of its waters and significant national engagement in related economic and cultural activities. All data inventoried by the project were aligned with national and international environmental-economic accounting standards to support future inclusion in Australia’s ocean accounting frameworks. This inventory provides the foundation for developing a national ocean account for kelp forests, and identifies the key data gaps that must be addressed to fully capture the GSR’s value and guide long-term policy and investment. Outputs • Inventory of data collated and assessed for the purpose of developing ecosystem accounts for GSR • Final technical report with analysed data, including a short summary of recommendations for policy makers of key findings (written)
-
***This record contains a subset of benthic habitat data from https://doi.org/10.25959/E4S6-GE74 (NESP MaC Project 3.6) rehosted for the purposes of the Seamap Australia collaborative project.*** Seagrass beds are a dominant marine ecosystem of Tayaritja (the Furneaux Group of Islands) in the north-eastern waters off Tasmania. Historical coarse mapping has indicated extensive beds of Posidonia, Amphibolis, Heterozostera, and Zostera species, potentially comprising some of the largest and deepest seagrass extents found in temperate Australian waters. However, limited data on the distribution and ecological value of these seagrass habitats represents a significant knowledge gap in understanding Australia's wetland natural assets. This project mapped the extent, ecological composition, population structure, and blue carbon value of seagrass beds around Tayaritja, in partnership with the Tasmanian Aboriginal Centre, as part of NESP Marine and Coastal Hub Project 3.6. The study area focused on the coastal waters surrounding Flinders Island in the western Furneaux Group, with mapping extending from the high tide line to the depth limit of reliable optical detection (approximately 30 m), based on analysis of field data and satellite imagery capabilities in the region. This metadata record specifically describes the benthic mapping component of the study. A combination of close-range remote sensing methods was used to map the extent and ecological values of seagrass beds. High-resolution satellite imagery from Sentinel-2 (10 m) sensors, combined with bathymetric LiDAR data and oceanographic variables, was used to map baseline seagrass extent and composition. A field campaign deployed a Benthic Observation Survey System (BOSS) and unBaited Remote Underwater stereo-Video system (stereo-uBRUV) at approximately 400 locations to validate remote sensing outputs, collecting field photo quadrats and rhizome cores. From these data, maps were produced showing the extent and coverage of seagrass, sand, and macroalgae, and where possible, seagrass species composition, subject to water depth and clarity constraints. See the "Lineage" section of this record for full methodology.
-
This record provides an overview of the NESP Marine and Coastal Hub scoping study - "Scoping for an Australian Wetland Inventory: identifying knowledge gaps and solutions for mapping Australian marine and coastal wetlands". No data outputs were generated by this project. -------------------- Marine and coastal wetlands provide extensive ecosystem services—protecting shorelines, improving water quality, supporting healthy fisheries, promoting tourism, storing carbon, and holding cultural significance for Aboriginal and Torres Strait Islander people. Like many wetlands around the world, Australian wetlands continue to be threatened, degraded, and lost due to climate change, development, and other human activities. To support the Australian Government’s development of a national wetland inventory, this project assessed the current state of coastal wetland mapping across five key areas: seagrass, saltmarsh, intertidal macroalgae, shorebird habitat, and blue carbon. It identified major knowledge and inventory gaps through a combination of literature review and consultation with 73 end-users and experts, resulting in 25 targeted recommendations to guide future mapping and data integration. A summary of the status of mapping habitat attributes and ecosystem services such as blue carbon, coastal protection and shorebird habitat is available in the project's Final Technical Report. This report incudes recommendations to guide investment in high-demand areas and support nationally consistent wetland management and reporting to address key knowledge gaps. Outputs • Report reviewing and synthesising knowledge gaps in inventory mapping of marine and coastal wetlands, identifying effective solutions, and guiding subsequent research projects for enhancing wetland mapping [written]
-
The Parks Australia Management Effectiveness (ME) system - previously MERI - is underpinned by a controlled, common language that provides a nationally consistent lexicon for a) Natural, cultural, and heritage values; (b) Social, cultural, and economic benefits; (c) Activities and anthropogenic pressures; and (d) Biophysical, and social and economic drivers. The Natural Values component of the common language is defined at three levels: 1) ecosystem complexes; 2) ecosystems; and 3) ecosystem components. This map shows the Ecosystems (tier 2) component of the Natural Values, and delineates features by habitat and depth for the Australian Exclusive Economic Zone (EEZ). This version (2022) of the National Values Ecosystems dataset uses Geoscience Australia's 250m resolution Australian Bathymetry and Topography Grid, 2009 (https://dx.doi.org/10.4225/25/53D99B6581B9A) as the basis for the map. See Hayes et al. 2021 and Dunstan et al. 2023 for a full definition of Natural Values Ecosystem terms, input datasets used, and processing steps involved with the creation of this map. Note that this dataset uses a combination of input data sources and interpolates where data gaps exist. The common language adopts a functional, largely geo-physical perspective to define surrogates for marine ecosystems. This dataset is not a substitute for a validated habitat map (see Seamap Australia National Benthic Habitat Layer: https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/4739e4b0-4dba-4ec5-b658-02c09f27ab9a), but has a national coverage and provides valuable broad-scale categorisation of marine ecosystems in Australian waters.
-
This record provides an overview of the NESP Marine and Coastal Hub Research Plan 2023 project "Assessing changes in black rockcod abundance and size". For specific data outputs from this project, please see child records associated with this metadata. -------------------- The Black Rockcod (Epinephelus daemelii) is a large, reef-dwelling species that can live for more than 60 years. In Australia it occurs along the coast of New South Wales, including at Lord Howe Island. Black Rockcod populations have been significantly reduced here due to overfishing, accidental hooking, and loss or degradation of estuarine and intertidal nursery habitats. As a result, the species is listed as Vulnerable under Commonwealth and NSW legislation. Despite having been protected from fishing in NSW since 1983, Black Rockcod are still taken illegally, or caught incidentally and released, which can lead to mortality post-release from embolism. Long-term population monitoring is a high priority identified by the species’ recovery plan and the NSW Fisheries Scientific Committee. In 2010, a broadscale baseline survey (81 sites) was undertaken in northern NSW and Lord Howe Island, followed by smaller surveys every four to five years. This project repeated the initial 81 baseline site surveys to assess if protection measures, such as marine protected area sanctuary zones, are assisting in recovery of black rockcod. This contributed to a 13-year time series (2010 – 2023) that was used to examine distribution and population structure of rockcod to assess if recovery actions being implemented are effective. Outputs • underwater visual census (UVC) data for black rock cod [dataset] • Final project report [written]
IMAS Metadata Catalogue