Deakin University
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
This project undertook a review of existing environmental literature and data on threatened and migratory marine species data to inform the sustainable development of Offshore Renewable Energy (ORE) projects (primarily wind) in Australia. A list of priority species and species of secondary importance were identified by the project together with stakeholders from DCCEEW and NOPSEMA. This list comprised of 100 species of birds, cetaceans, bony fish, sharks, pinnipeds and marine turtles. A literature search was undertaken for each species using a systematic approach detailed in the 'Lineage' section of this record. Each publication was assessed for whether the study location was within or near the ORE area and an attribute populated to indicate the ORE area(s) overlapped. Studies with spatial coverages not overlapping the ORE area were still retained if they were located nearby the ORE area, for species with poorly-defined distributions (e.g. short-finned pilot whales), or for migratory coastal birds that may use the ORE area as migration corridors. The potential impacts of ORE infrastructure and operation for each species was noted from a controlled list of potential impacts. The main topic of the study, and the methodologies used in the study, were also recorded, along with the general spatial location(s) of the study and the publication citation. The resultant inventory serves as a comprehensive record of existing publications associated with priority species potentially at risk from ORE developments, along with the nature of the potential impact. The inventory is intended to provide research information and methods for use in the planning, development, operation, and decommissioning phases of the offshore wind sector. The dataset attached to this record provides a spatial index of of all publications identified through this inventory process. Observation data each of the species were additionally compiled from BirdLife Australia, Atlas of Living Australia (ALA), Ocean Biodiversity Information System (OBIS), Victorian Biodiversity Atlas Victorian Biodiversity Atlas (VBA), and GlobalArchive (a repository of stereo-video annotations data). These data are freely available to download from each of the source repositories.
-
***This record contains a subset of benthic habitat data from https://doi.org/10.25959/E4S6-GE74 (NESP MaC Project 3.6) rehosted for the purposes of the Seamap Australia collaborative project.*** Seagrass beds are a dominant marine ecosystem of Tayaritja (the Furneaux Group of Islands) in the north-eastern waters off Tasmania. Historical coarse mapping has indicated extensive beds of Posidonia, Amphibolis, Heterozostera, and Zostera species, potentially comprising some of the largest and deepest seagrass extents found in temperate Australian waters. However, limited data on the distribution and ecological value of these seagrass habitats represents a significant knowledge gap in understanding Australia's wetland natural assets. This project mapped the extent, ecological composition, population structure, and blue carbon value of seagrass beds around Tayaritja, in partnership with the Tasmanian Aboriginal Centre, as part of NESP Marine and Coastal Hub Project 3.6. The study area focused on the coastal waters surrounding Flinders Island in the western Furneaux Group, with mapping extending from the high tide line to the depth limit of reliable optical detection (approximately 30 m), based on analysis of field data and satellite imagery capabilities in the region. This metadata record specifically describes the benthic mapping component of the study. A combination of close-range remote sensing methods was used to map the extent and ecological values of seagrass beds. High-resolution satellite imagery from Sentinel-2 (10 m) sensors, combined with bathymetric LiDAR data and oceanographic variables, was used to map baseline seagrass extent and composition. A field campaign deployed a Benthic Observation Survey System (BOSS) and unBaited Remote Underwater stereo-Video system (stereo-uBRUV) at approximately 400 locations to validate remote sensing outputs, collecting field photo quadrats and rhizome cores. From these data, maps were produced showing the extent and coverage of seagrass, sand, and macroalgae, and where possible, seagrass species composition, subject to water depth and clarity constraints. See the "Lineage" section of this record for full methodology.
-
This record provides an overview of the NESP Marine and Coastal Hub Research Plan 2023 project "Guiding research and best practice standards for the sustainable development of Offshore Renewables and other emerging marine industries in Australia". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Australia is entering a phase of rapid development of offshore renewable energy (ORE) projects and there is an immediate need to ensure these developments occur in a socio-ecologically sustainable manner. This project used a systematic approach to identify existing environmental and cultural data and best-practice monitoring standards to inform the sustainable development of ORE projects (primarily wind) in Australia and enabling regulatory decisions to be compliant with Environment Protection and Biodiversity Conservation (EPBC) Act and the Offshore Electricity Infrastructure (OEI) Act requirements. Focus areas of the data inventory were: • Seabed geomorphology and habitat characterisation. • Interactions with oceanography; eg the potential influence on coastal processes including sediment transport. • Interacting species and habitats; eg seabirds, shorebirds and migratory terrestrial birds, mammals, fish, sharks and rays, and invertebrates. • Potential impacts of installation, operation, and decommissioning; eg habitat modification (including dredging/impact to wetlands), installation noise, ongoing noise and electromagnetic fields, vessel activity, collision risk and barrier effects on birds. • Monitoring needs and associated best practices. • Indigenous communities affected by ORE development areas. This project ran in conjunction with a second project (https://www.nespmarinecoastal.edu.au/project/3-21) that addressed the immediate priorities of regulators, with a focus on the confirmed area of declaration for ORE off the east Gippsland coast, Victoria. Critical to informing the direction and focus of both these projects was guidance from an ORE Program Steering Committee comprised of representatives from relevant sections within DCCEEW, NOPSEMA, and MaC Hub partners involved in the project. Outputs • Inventory of existing information and associated sources for the following thematic areas: seabed geomorphology and habitat, oceanography, species and habitats, affected indigenous communities, ongoing monitoring needs and associated best practices, potential impacts of installation and operation [data inventory] • Final project report [written]
-
This record provides an overview of the NESP Marine and Coastal Hub Research Plan 2023 project "Improving data on the distribution and ecological value of temperate subtidal seagrass in tayaritja (Furneaux Group of Islands), Tasmania". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Seagrass meadows are a dominant marine ecosystem of tayaritja (Furneaux group of Islands) in the north-eastern waters off Tasmania, with historical coarse mapping indicating extensive beds of Posidonia, Amphibolis, Hetreozostera and Zostera seagrass. The beds of Posidonia and Amphibiolis are potentially some of the largest and deepest extents found in temperate waters of Australia. Lack of data on the distribution and ecological value of these seagrass habitats represents a significant knowledge gap in understanding Australian wetland natural assets that provide a range of ecological, social, cultural and economic values. This project aims to map the extent and ecological composition, population structure and blue carbon value of the seagrass beds around tayaritja in partnership with the Tasmanian Aboriginal Centre. This project will help managers and the Aboriginal communities to understand the significance of these seagrass meadows and understand how they may be monitored. Outputs • Seagrass extent and composition map for Furneaux group [dataset] • Video and imagery of seagrass [dataset] • Final project report [written]
-
Seagrass beds are a dominant marine ecosystem of Tayaritja (the Furneaux Group of Islands) in the north-eastern waters off Tasmania. Historical coarse mapping has indicated extensive beds of Posidonia, Amphibolis, Heterozostera, and Zostera species, potentially comprising some of the largest and deepest seagrass extents found in temperate Australian waters. However, limited data on the distribution and ecological value of these seagrass habitats represents a significant knowledge gap in understanding Australia's wetland natural assets. This project mapped the extent, ecological composition, population structure, and blue carbon value of seagrass beds around Tayaritja, in partnership with the Tasmanian Aboriginal Centre. The study area focused on the coastal waters surrounding Flinders Island in the western Furneaux Group, with mapping extending from the high tide line to the depth limit of reliable optical detection (approximately 30 m), based on analysis of field data and satellite imagery capabilities in the region. The field validation component of this study involved deployment of benthic video platforms to capture imagery of seagrass beds and associated ecosystems. A field campaign deployed a Benthic Observation Survey System (BOSS) and unBaited Remote Underwater stereo-Video system (stereo-uBRUV) at approximately 400 locations to collect photoquadrats and validate remote sensing outputs. Imagery annotation was conducted in the SQUIDLE+ platform. See dataset https://doi.org/10.25959/e4s6-ge74 for habitat maps derived from field validation and remote sensing inputs. The approach developed through this study contributed to the creation of the NESP Standard Operating Procedure (SOP) for Seagrass Mapping using Optical Remote Sensing (https://sustainabledevelopmentreform.github.io/nesp-sop-seagrass-mapping).. See the "Lineage" section of this record for full methodology of field collection techniques.
-
Seagrass beds are a dominant marine ecosystem of Tayaritja (the Furneaux Group of Islands) in the north-eastern waters off Tasmania. Historical coarse mapping has indicated extensive beds of Posidonia, Amphibolis, Heterozostera, and Zostera species, potentially comprising some of the largest and deepest seagrass extents found in temperate Australian waters. However, limited data on the distribution and ecological value of these seagrass habitats represents a significant knowledge gap in understanding Australia's wetland natural assets. This project mapped the extent, ecological composition, population structure, and blue carbon value of seagrass beds around Tayaritja, in partnership with the Tasmanian Aboriginal Centre. The study area focused on the coastal waters surrounding Flinders Island in the western Furneaux Group, with mapping extending from the high tide line to the depth limit of reliable optical detection (approximately 30 m), based on analysis of field data and satellite imagery capabilities in the region. This record specifically describes the benthic mapping component of the study. See https://doi.org/10.25959/WRXK-KV06 for imagery annotation data from the field validation campaigns. A combination of close-range remote sensing methods was used to map the extent and ecological values of seagrass beds. The approach developed through this study contributed to the creation of the NESP Standard Operating Procedure (SOP) for Seagrass Mapping using Optical Remote Sensing (https://sustainabledevelopmentreform.github.io/nesp-sop-seagrass-mapping).. High-resolution satellite imagery from Sentinel-2 (10 m) sensors, combined with bathymetric LiDAR data and oceanographic variables, was used to map baseline seagrass extent and composition. A field campaign deployed a Benthic Observation Survey System (BOSS) and unBaited Remote Underwater stereo-Video system (stereo-uBRUV) at approximately 400 locations to validate remote sensing outputs. From these data, maps were produced showing the extent and coverage of seagrass, sand, and macroalgae, and where possible, seagrass species composition, subject to water depth and clarity constraints. See the "Lineage" section of this record for full methodology. Three key types of mapping products were developed: ---Occurrence probability maps--- Continuous probability surfaces (0-100%), modelled from presence/absence data, indicating the likelihood of habitat presence at each pixel for: • Seagrass (all morphologies; > 5% cover observed in underwater field imagery) • Macroalgae species/assemblages • Sand ---Habitat percentage cover maps--- Quantitative estimates of percent cover for each habitat category: • Seagrass (all morphologies) • Macroalgae species/assemblages • Sand ---Derived products--- • Baseline binary presence/extent maps derived from optimised probability thresholds: ○ Seagrass: sgprob > 0.5 & sgprob > macroprob & sandcover < 0.9 ○ Macroalgae: macroprob > 0.5 & macroprob > sgprob & sandcover < 0.9 ○ Sand: sandprob > 0.5 & sandcover < 0.2 • Predicted seagrass species composition of binary extent map. • Fractional cover visualisation: combining cover percentages of multiple habitats into a single composite product • Composite habitat maps: combining binary habitat extents and delineating mixed habitat classes These complementary products serve different purposes: probability maps provide confidence measures, extent maps delineate habitat boundaries, percent cover maps support quantitative analysis of habitat density patterns, and composite habitat maps represent the diversity of mixed habitat classes. Together, they provide a comprehensive understanding of seagrass and associated habitat distribution across the study area.
-
This dataset has been superseded by https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/0145df96-3847-474b-8b63-a66f0e03ff54 (Victorian Statewide Marine Habitat Map 2023). The Victorian seabed habitat map documents the distribution of broad benthic habitat types in Victorian Coastal Waters to the State’s 3 nautical mile jurisdictional limit. The map was created using a top-down modelling process whereby habitat descriptors were assigned using seafloor structure and biological information derived from multibeam sonar (Victorian Marine Habitat Mapping Project), bathymetric LiDAR (Future Coasts program) and observations from underwater video. Identification of benthic biota, to the lowest discernible taxonomic level, and substrate characteristics were recorded according to the Victorian Towed Video Classification scheme (Ierodiaconou et al. 2007).
-
This dataset has been superseded by https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/0145df96-3847-474b-8b63-a66f0e03ff54 (Victorian Statewide Marine Habitat Map 2023). The Victorian Benthic Habitats - Gippsland Lakes (CBICS) is a synthesis of all existing benthic habitat characterisations of the Gippsland Lakes Region which have been reclassified to conform to the Combined Biotope Classification Scheme (CBiCS). The study area for this layer is defined as Jack Smith Lake in the west to Mallacoota in the east.
-
This dataset has been superseded by https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/0145df96-3847-474b-8b63-a66f0e03ff54 (Victorian Statewide Marine Habitat Map 2023). The Victorian Benthic Habitats - Port Phillip Bay (CBICS) is a synthesis of all existing benthic habitat characterisations of the embayment which have been reclassified to conform to the Combined Biotope Classification Scheme (CBiCS). Base information for the synthesised dataset were sourced from data provided by: Marine and Freshwater Resources Institute, Queenscliff, Victoria Institute for Sustainability and Innovation, Victoria University, Melbourne. Parks Victoria, Victorian Government Deakin University, Victoria Department of Environment, Land, Water and Planning, Victorian Government
-
This dataset has been superseded by https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/0145df96-3847-474b-8b63-a66f0e03ff54 (Victorian Statewide Marine Habitat Map 2023). The Victorian Benthic Habitats - Western Port Bay (CBICS) is a synthesis of all existing benthic habitat characterisations of the embayment which have been reclassified to conform to the Combined Biotope Classification Scheme (CBiCS). Base layers for the synthesised dataset were sourced from data provided by: Marine and Freshwater Resources Institute, Queenscliff, Victoria Institute for Sustainability and Innovation, Victoria University, Melbourne. Parks Victoria, Victorian Government Deakin University, Victoria Department of Environment, Land, Water and Planning, Victorian Government