Keyword

Marine Geoscience

26 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 26
  • Land features were derived by aggregating and dissolving the boundaries of the 1 degree S57 file (lndare_a layer) series for the Australian continent (+ Lord Howe Island). This represents land the area defined at Lowest Astronomical Tide (LAT) by the Australian Hydrographic Office. The Great Australian Bight was missing from this series, and was replaced by Geoscience Australia's 1:100k coastline. This data has been made available through the data collation process conducted by the NESP Marine Biodiversity Hub Project D3 (Reefs on the Australian Continental Shelf).

  • The South China Sea (SCS) is the most important source of water vapor for the East Asian monsoon (EAM). Late Cenozoic (~34–30 Ma) opening of the SCS likely contributed significantly to the establishment of a strong, modern-like EAM at ~25 Ma per climate sensitivity studies. However, the importance of SCS tectonics in contributing to the evolution of the EAM has been neglected due to the temporal mismatch between both events (5–9 million years). Here, we investigate the bathymetric, sedimentary and oceanographic evolution of the SCS basin by combining Sr-Nd isotopic analyses of rift- to drift sediments from recent ocean drilling expeditions, high-resolution paleobathymetry reconstructions and ocean circulation simulations of this crucial time period. We show that the transition from fluvial, to shallow- and deep-marine environment in the SCS and its opening to the Pacific Ocean occurred well after the onset of seafloor spreading. We highlight a rapid (<1 myr), “flooding” event of Pacific bottom waters entering the young SCS through the narrow Luzon Strait between 25.5–24.5 Ma, coinciding with the strengthening EAM pattern. This shift is underscored by isotopic analysis of detrital fractions which suggest a change in provenance from local sources to inland China deserts and Loess signal shortly before ~25.5 Ma, likely transported as eolian dust by intensifying winter monsoon winds. Tectonic-driven rapid Pacific flooding likely increased the east-west humidity gradient between land and sea and contributed to the establishment of a modern-like, strong EAM at 25 Ma.

  • Categories    

    The final lithospheric breakup of the Australian-Antarctic rift system remains controversial due to sparse geological constraints on the nature of the basement along the ocean-continent transition zones. We present new interpretations of multichannel seismic reflection transects, as well as new petrological data of dredged mantle rocks along the East Antarctic margin (Seamount B, offshore Terre Adélie). By combining both datasets, we show that a 50–100 km wide domain of cold (900°C), fertile subcontinental mantle was exhumed along the non-volcanic Antarctic margin. The dredged peridotites preserve characteristics similar to mantle xenoliths found in syn- to post-rift volcanism at the eastern end of the Australian margin (Victoria and Tasmania), indicating the sampling of a common fertile subcontinental mantle during rifting between Australia and Antarctica. Seamount B represents the initial stages of exhumation of cold subcontinental lithosphere along an ocean-continent transition during rifting. This thick mantle domain was likely affected by syn-rift melt impregnation at high-pressure (8 kbar), leading to the formation of plagioclase-pyroxenites. Overall, the combination of continental rifted blocks, a 50-100 km wide domain of volcanic-poor subcontinental mantle and (ultra)-slow spreading implies that ocean-continent transition zones along the Australian-Antarctic margins represent a recent analogue to ocean continent transition zones from the Jurassic Western Tethys. Additionally, evidence of syn-rift melt stagnation at high pressure suggests that magmatism along the Australian-Antarctic rifted margins was sufficient to form magnetic anomalies that can be used as isochrons despite their formation in lithosphere other than mature, steady-state ocean crust.

  • The CSIRO’s Oceans & Atmosphere Shallow Survey Internal Facility (SSIF) was contracted by the Institute for Marine and Antarctic Studies (IMAS) of the University of Tasmania (UTAS) in collaboration with Parks Australia, to undertake a hydrographic survey of the Boags Commonwealth Marine Reserve in the southwestern Bass Strait. This site was surveyed in conjunction with other smaller sites for Petuna Aquaculture, as part of a broader survey campaign. All of the sites covered in this campaign are located in the vicinity of the Hunter Group of Islands, off the north-western coast of Tasmania.

  • Categories  

    Dredge rocks were recovered on scientific voyage SS2011_06 on the MNF RV Southern Surveyor, from the Perth Abyssal Plain, offshore Western Australia. Continental rocks (gneiss, granite, sandstone) were dredged from both the Batavia Knoll and the Gulden Draak Ridge (dredge sites 1, 2, and 3). A small amount of high weathered basalt was recovered from the Gulden Draak Ridge (dredge site 4). Three successful dredges were undertaken along the Dirck Hartog Ridge recovering predominantly gabbro (dredge 5) and basalts (dredge sites 6 and 7).

  • This dataset provides the spatially continuous data of seabed gravel (sediment fraction >2000 µm), mud (sediment fraction < 63 µm) and sand content (sediment fraction 63-2000 µm) expressed as a weight percentage ranging from 0 to 100%, presented in 10 m resolution raster grids format and ascii text file.</p> The dataset covers the eight areas in the Timor Sea region in the Australian continental EEZ.</p> This dataset supersedes previous predictions of sediment gravel, mud and sand content for the basin with demonstrated improvements in accuracy. Accuracy of predictions varies with sediment types, with a VEcv = 71% for mud, VEcv = 72% sand and VEcv = 42% for gravel. Artefacts occur in this dataset as a result of noises associated predictive variables (e.g., horizontal and vertical lines resulted from predictive variables derived from backscatter data are the most apparent ones). To obtain the most accurate interpretation of sediment distribution in these areas, it is recommended that noises with backscatter data should be reduced and predictions updated.</p> This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • Categories  

    The Oceanic Shoals survey (SOL5650, GA survey 339) was conducted on the R.V. Solander in collaboration with Geoscience Australia, the Australian Institute of Marine Science (AIMS), University of Western Australia and the Museum and Art Gallery of the Northern Territory between 12 September - 5 October, 2012. This dataset comprises an interpreted geomorphic map. Interpreted local-scale geomorphic maps were produced for each survey area in the Oceanic Shoals Commonwealth Marine Reserve (CMR) using multibeam bathymetry and backscatter grids at 2 m resolution and bathymetric derivatives (e.g. slope; 1-m contours). Six geomorphic units; bank, depression, mound, plain, scarp and terrace were identified and mapped using definitions suitable for interpretation at the local scale (nominally 1:10 000). Maps and polygons were manual digitised in ArcGIS using the spatial analyst and 3D analyst toolboxes. For further information on the geomorphic mapping methods please refer to Appendix N of the post-survey report, published as Geoscience Australia Record 2013/38: Nichol, S.L., Howard, F.J.F., Kool, J., Stowar, M., Bouchet, P., Radke, L., Siwabessy, J., Przeslawski, R., Picard, K., Alvarez de Glasby, B., Colquhoun, J., Letessier, T. & Heyward, A. 2013. Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) Biodiversity Survey: GA0339/SOL5650 Post Survey Report. Record 2013/38. Geoscience Australia: Canberra. (GEOCAT #76658).

  • Categories  

    The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This dataset comprises an interpreted geomorphic map. Interpreted local-scale geomorphic maps were produced for each survey area in the Petrel Sub-basin using multibeam bathymetry and backscatter grids at 2 m resolution and bathymetric derivatives (e.g. slope; 1-m contours). Five geomorphic units; bank, plain, ridge, terrace and valley, were identified and mapped using definitions suitable for interpretation at the local scale (nominally 1:10 000). Maps and polygons were manual digitised in ArcGIS using the spatial analyst and 3D analyst toolboxes.

  • Rock samples were dredged from seamounts in the southern Tasman Sea on the RV Investigator, voyage IN2018_V08

  • Categories    

    Rocky reefs form an important habitat on the continental shelf and one subject to disproportionate fishing pressure given the high productivity of this habitat relative to adjacent sandy seabed. Despite this, little is known of the extent and nature of these systems beyond their value to the fishing industry. This project collated all known mapping data from government and industry (including data acquired during CERF and NERP Hubs) to provide an updated map of this key habitat around Australia. A geomorphological classification system is also being developed for these reefs, and associated cross-shelf habitats with the aim of it being accepted and adopted nationally, and it is being tested and refined for biological applicability. This record describes the national habitat map data product generated from multiple datasets collated as part of NESP MBH Project D3. The individual habitat mapping datasets collected as part of the data collation process have also been published and are linked to this record.