Keyword

EARTH SCIENCE | OCEANS | SALINITY/DENSITY | SALINITY

14 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 14
  • Categories    

    Trace element data collected from 18 stations near the Mertz Glacier on the 2019 ENRICH voyage. Sea water was collected using a 12-bottle trace metal rosette (TMR) and acidified for analysis back in Hobart. Samples were measured using an offline seaFAST pre-concentration system and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) at the University of Tasmania. This data contributed to Smith et al., Circumpolar Deep Water and shelf sediments support late summer microbial iron remineralisation in Global Biogeochemical Cycles (2021).

  • Categories    

    Biological ocean data collected from ships find reuse in aggregations of historical data. These data are heavily relied upon to document long term change, validate satellite algorithms for ocean biology and are useful in assessing the performance of autonomous platforms and biogeochemical models. There is a need to combine subsurface biological and physical data into one aggregate data product to support reproducible research. Existing aggregate products are dissimilar in source data, have largely been isolated to the surface ocean and most omit physical data. These products cannot easily be used to explore subsurface bio-physical relationships. We present the first version of a biological ocean data reformatting effort (BIO-MATE, https://gitlab.com/KBaldry/BIO-MATE). BIO-MATE uses R software that reformats openly sourced published datasets from oceanographic voyages. These reformatted biological and physical data from underway sensors, profiling sensors and pigments analysis are stored in an interoperable and reproducible BIO-MATE data product for easy access and use.

  • The ETAS (Eastern TASmania) model is a high-resolution (~2 km in the horizontal) ocean model for eastern Tasmania, providing three-dimensional estimates of mean temperature, salinity, and circulation over the 1993-2016 period. This dataset consists of temperature, salinity, meridional (N-S), zonal (E-W), vertical, along- and cross-shore currents, density, sea level and net surface heat flux organised into yearly files and aggregated daily or monthly. A MATLAB script to extract portions of the data is available here: https://github.com/ecjoliver/extractETAS

  • The AUStralian Tidal Energy (AUSTEn) project was a three year project (2018 - 2020) funded by the Australian Renewable Energy National Agency (agreement number G00902) led by the Australian Maritime College (University of Tasmania), in partnership with CSIRO and University of Queensland. The project had a strong industry support (Atlantis Resources Limited, MAKO Tidal Turbines Ltd, Spiral Energy Corporation Ltd). The aim of the project was to assess the technical and economic feasibility of tidal energy in Australia, based on the best understanding of resource achievable. For further information and output of the project, please visit the AUSTEn project website www.austen.org.au.

  • The AUStralian Tidal Energy (AUSTEn) project was a three year project (2018 - 2020) funded by the Australian Renewable Energy National Agency (agreement number G00902) led by the Australian Maritime College (University of Tasmania), in partnership with CSIRO and University of Queensland. The project had a strong industry support (Atlantis Resources Limited, MAKO Tidal Turbines Ltd, Spiral Energy Corporation Ltd). The aim of the project was to assess the technical and economic feasibility of tidal energy in Australia, based on the best understanding of resource achievable. For further information and output of the project, please visit the AUSTEn project website www.austen.org.au.

  • Categories    

    In support of future science missions, an engineering demonstration was conducted to show the ability of the nupiri muka AUV to be deployed and operated at an ice shelf. The AUV was deployed from Davis Station, Antarctica, to conduct underwater surveys in the vicinity of, and beneath, the Sørsdal ice shelf. The AUV conducted several surface transits from the station to the ice shelf, where dive missions at various depths were conducted. The primary mode of operation was the AUV tracking near the seafloor. In addition, a patch survey was conducted near the stations, where several sediment grabs were taken.

  • The ETAS (Eastern TASmania) model is a high-resolution (~2 km in the horizontal) ocean model for eastern Tasmania, providing three-dimensional estimates of daily temperature, salinity, and circulation over the 1993-2014 period. This dataset consists of eastward (u) and northward (v) currents organised into yearly files.

  • The ETAS (Eastern TASmania) model is a high-resolution (~2 km in the horizontal) ocean model for eastern Tasmania, providing three-dimensional estimates of daily temperature, salinity, and circulation over the 1993-2014 period. This dataset consists of hourly temperature, salinity, sea level, eastward (u) and northward (v) currents (at depth and vertically-averaged) at selected locations.

  • The ETAS (Eastern TASmania) model is a high-resolution (~2 km in the horizontal) ocean model for eastern Tasmania, providing three-dimensional estimates of daily temperature, salinity, and circulation over the 1993-2014 period. This dataset consists of temperature, salinity, density, sea level, eastward (u) and northward (v) currents organised into timeseries files.

  • Categories    

    The AUStralian Tidal Energy (AUSTEn) project was a three year project (2018 - 2020) funded by the Australian Renewable Energy National Agency (agreement number G00902) led by the Australian Maritime College (University of Tasmania), in partnership with CSIRO and University of Queensland. The project had a strong industry support (Atlantis Resources Limited, MAKO Tidal Turbines Ltd, Spiral Energy Corporation Ltd). The aim of the project was to assess the technical and economic feasibility of tidal energy in Australia, based on the best understanding of resource achievable. For further information and output of the project, please visit the AUSTEn project website www.austen.org.au.