Contact for the resource

Centre for Tropical Waters and Aquatic Research (TropWATER), James Cook University (JCU)

17 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 17
  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project B4 - "Underpinning the repair and conservation of Australia’s threatened coastal-marine habitats". For specific data outputs from this project, please see child records associated with this metadata. -------------------- The primary objective of this project is to provide essential research to underpin restoration efforts to increase the success and efficiency of shellfish and saltmarsh repair. The secondary objective is to quantify clear easily understood benefits of repair to further increase groundswell, Indigenous and interest group support for repair efforts. For Phase 2 this involves: Shellfish reefs 1. Providing critical research to underpin the success of companion works investments into Sydney rock oyster (Saccostrea glomerata) restoration in Qld and NSW 2. Ongoing engagement with Indigenous groups, focused around especially SEQ and NSW to match the emphasis on Sydney rock oyster; 3. Through the Nature Conservancy, linking to shellfish restoration works in Port Phillip Bay (Vic), St Vincent’s Gulf (SA) and Oyster Harbour (WA) so that a National Business Case complete with examples of successes to date can be developed; 4. Underpinning this succinct business case with an information base for any follow-on activities such as assessment of shellfish reefs as an endangered community. Salt marshes 1. Estimating the benefits of salt marsh repair for an easily publicly understood indicator - prawn species. 2. Undertaking this work in NSW and Qld in parallel with proposed repair works so that very concrete case studies are available to demonstrate the benefits of repair. Planned Outputs Shellfish reef project outputs: • A scientific paper published in an eminent, peer-reviewed journal describing the ecology and biodiversity of shellfish reefs and biodiversity comparison against other marine habitats; • A scientific paper published in an eminent, peer-reviewed journal which identifies trajectories of change from past baselines to current condition and develops achievable targets for repair; • News stories, web articles, social media, brochures and oral presentations at national/international conferences, which communicate the key research findings to coastal stakeholders such as fishers, divers, NRM groups and government agencies; • News stories, web articles and social media which communicate the importance of shellfish reefs and shellfish food sources to Indigenous Australians; • Summary of community benefit and business propositions for coastal wetland repair expanding on the vision of a rejuvenated coastal ecology and written at the level required for input to various investors, agencies and public policy; • Updates at the end of 2016 as part of stakeholder engagement and continued communication. Salt marsh prawn productivity outputs: • A scientific paper published in an eminent, peer-reviewed journal quantifying and contrasting prawn productivity in healthy and degraded salt marsh communities in tropical and temperate environments; • Publicly accessible communication resources (brochures, social media, media releases and webpages) which articulate simply the prawn productivity values of salt marshes and links this to the need for the protection, conservation and restoration of degraded salt marsh communities.

  • Categories  

    This dataset summarises 30 years of seagrass data collection (1984-2014) within the Great Barrier Reef World Heritage Area. The Meadow data describes seagrass at 1,169 individual or composite meadows. The data includes information on species, meadow type and age and reliability of the data. Data represented in this dataset has been collected by the TropWATER Seagrass Group and CSIRO in a GIS database. In making this data publicly available for management, the authors from the TropWATER Seagrass Group request being contacted and involved in decision making processes that incorporate this data, to ensure its limitations are fully understood. The site and meadow GIS available on eAtlas should be considered a “living” document that will be updated and modified as new data become available. Additional 'point' site data, and alternative download formats are available from eAtlas. https://eatlas.org.au/geonetwork/srv/eng/catalog.search#/metadata/77998615-bbab-4270-bcb1-96c46f56f85a A later version (2020) of this dataset including 35 years of data has been published under "Seagrass mapping synthesis: A resource for coastal management in the Great Barrier Reef (NESP TWQ Project 3.2.1 and 5.4, TropWATER, James Cook University)." https://eatlas.org.au/data/uuid/5011393e-0db7-46ce-a8ee-f331fcf83a88 Data Dictionary: Seagrass meadow data: - NRM_REGION: The NRM region in which the survey occurred. - SURVEY_DAT: Survey month and year, or a list of survey dates for meadows repeatedly sampled. - METHOD: Sampling and mapping methods – GPS/aerial photography, helicopter, walking, boat with camera, diver, grab and/or sled. - PERSISTENC: Meadows were classed according to four categories: Stable, Variable, Highly variable ephemeral, or Unknown. - MEADOW_LOC: Meadows were classed according to three categories, although some meadows cover a range of these locations: Intertidal, Shallow subtidal, or Deep subtidal. - DENSITY: Meadow density categories (light, dense, variable among years, unknown) were determined by the consistency of mean above-ground biomass of the dominant species among all years sampled. - DOMINANT_S: Dominant species and species present. - SPP_PRESEN: All species present. - MEAN_BIOMA: Mean meadow biomass in g DW m-2 (+ standard error if available), or the minimum and maximum biomass recorded for meadows sampled more than once. - AREA_HA: Meadow area in hectares (+ reliability estimate if available), or the minimum and maximum area recorded for meadows sampled more than once. - HECTARES: Total extent of meadow (HA) - PERCENT_CO: Meadow percent cover - this value represents mean seagrass percent cover, or the range of percent cover (if >1 number in the data cell). Meadow percent cover was most commonly calculated in pre-1990s surveys and recorded as “n/a” if not available. - CUSTODIAN: Data custodians - COMMENTS Meadow Persistence: - Stable: enduring meadow form; seagrass presence, biomass and area expected to be stable over time and seagrass meadow expected to be a permanent feature apart from extreme events or sustained long term impacts; - Variable: meadow presence, biomass and area expected to fluctuate within and among years, but generally some seagrass expected to be present apart from extreme events or sustained long term impacts; - Highly variable ephemeral: meadow not persistent over time; at some time periods seagrass will be present and at other times absent. Ephemeral meadows that have a naturally extreme level of variation in area and biomass within and among years; - Unknown: undetermined persistence as meadow sampled only once. Meadow Location: - Intertidal - all sites surveyed by helicopter or walking within a meadow and/or comments in field books identified an intertidal meadow, - Shallow subtidal - meadows where free divers SCUBA, sled collection, or cameras were used to sample and water depth was generally <10 m; - Deep subtidal - for this project meadows >10 m deep were included as deep subtidal.

  • Categories    

    Between 2002 and 2014 Torres Strait was surveyed to assess seagrass presence and absence, and biomass (grams dry weight per m2) in the intertidal and subtidal zone.

  • Categories    

    Seagrass meadow extent and meadow-scape was mapped using four alternative approaches at Yule Point, a coastal clear water habitat, in the Cairns section of the Great Barrier Reef, between October 2017 and July 2020. Approach 1 included mapping meadow boundaries and meadow-scape during low spring tides on foot using a handheld GPS. Approach 2 was where the meadows were surveyed at low tide with observations from a helicopter, with observational spot-checks conducted at a number haphazardly scattered points. Approach 3 used imagery collected during low spring tides with a UAV at an altitude of 30 m with a resolution of 0.2cm/pixel. Approach 4 used PlanetScope Dove imagery captured on 05 September 2017 and 09 August 2019 coinciding as close as possible to the field-surveys in 2017 and 2019, with 3.7 m x 3.7 m pixels (nadir viewing) acquired from the PlanetScope archive. This record describes meadow extent data collected using Approach 4 (PlanetScope imagery). View the original metadata record at https://doi.pangaea.de/10.1594/PANGAEA.946604 for the full data collection.

  • Categories    

    Seagrass meadow extent and meadow-scape was mapped using two alternative approaches at Green Island, a reef clear water habitat, in the Cairns section of the Great Barrier Reef, in November 2020. Approach 1 included mapping seagrass meadow-scape using imagery captured during low spring tides with a DJI Mavic 2 Pro UAV at an altitude of 100 m, with a resolution of 2.45cm/pixel. Approach 2 used PlanetScope Dove imagery captured on 05 November 2020 coinciding as close as possible to the field-surveys from 25 to 27 November 2020, with 3.7 m x 3.7 m pixels (nadir viewing) acquired from the PlanetScope archive. This record describes meadow extent data collected using Approach 2 (PlanetScope imagery). View the original metadata record at https://doi.pangaea.de/10.1594/PANGAEA.946605 for the full data collection.

  • This record provides an overview of the scope of NESP Marine Biodiversity Hub Project E5 - "The role of restoration in conserving Matters of National Environmental Significance (MNES)". No raw data products are anticipated for this project. -------------------- This research will assess the capacity of habitat restoration to insulate against loss and degradation of MNES, through restoration key habitats and the species they support. In general, restoration techniques in marine ecosystems have been seen as embryonic and cost-prohibitive. But the risk of decline in key habitats and their potential loss through the cumulative impacts of climate change and local pressures makes the imperative for more effective and efficient techniques urgent. In several habitats, recent advances in technology suggest marked improvement in efficacy and cost-effectiveness. This project will review and assess the capacity of active restoration to secure conservation outcomes for MNES across four habitats: giant kelp forests, seagrass communities, saltmarsh communities, and shellfish communities. Planned Outputs • Report: Review – the role of restoration in conserving matters of national environmental significance • Report: Workshop outcomes - The cost-effectiveness of alternative restoration projects

  • Categories    

    Approximately 2,362 ±289 km2 of seagrass meadows were mapped in the waters of Hervey Bay and Great Sandy Strait between 6 and 14 December 1998. This was the first comprehensive survey of the Great Sandy region. The survey involved examination of 1,104 field validation points and identified 174 individual meadows. Seagrass extended from the intertidal and shallow subtidal waters to a depth of 32m. Seven species of seagrass were identified (Cymodocea serrulata, Halodule uninervis, Syringodium isoetifolium, Halophila decipiens, Halophila ovalis, Halophila spinulosa and Zostera muelleri) within 22 seagrass meadow/community types. Mapping survey methodologies followed standardised global seagrass research methods for intertidal, shallow subtidal (2‐10m depth) and deep waters (>10m) using both in situ and remote assessments. View the original metadata record at https://doi.org/10.1594/PANGAEA.876714.

  • Categories  

    This dataset describes seagrass at 34 individual meadows from surveys of Dugong and Turtle habitats in the North-West Torres Strait for November 2015 and January 2016. The data includes information on seagrass species, biomass, diversity, and BMI and algae percent cover. This meadow (polygon) layer provides summary information for all survey sites within the 34 individual seagrass meadows mapped in 2015-2016 with information including individual meadow ID, meadow location (intertidal/shallow subtidal/subtidal), meadow density based on mean biomass, meadow area, dominant seagrass species, seagrass species present, survey dates, survey method, and data custodian. ESRI and Landsat satellite image basemaps were used as background source data to check meadow and site boundaries, and re-map where required. The data described by this record is current as of 01/12/2016 for use in the Seamap Australia project. Newer versions of the data, additional 'point' data for 853 sites, and alternative download formats are available from eAtlas. http://eatlas.org.au/geonetwork/srv/eng/metadata.show?uuid=034ce816-0777-4bbd-aefc-8b73bd540245

  • Policy and decision makers often seek guidance as to the benefits of conservation and repair of coastal seascapes, to justify and underpin any potential investments. Much is already known about the broad habitat and nursery values of seascapes among the science community, but there is also a need for estimation of clear and unambiguous market-based benefits that may arise from investment in repair. Recognising that this economic knowledge is imperfect for Australian seascapes, three case studies spanning tropical, subtropical and temperate environments explored the benefits in question. The case studies focus on saltmarsh habitats in particular, which have received very little investment in repair despite subtropical and temperate coastal saltmarsh listed as vulnerable ecological community under Australian Federal legislation. A subset of economically important species and conservative judgments were used to characterise the minimum potential economic benefit. For each of the case studies the conclusion was that while the biological information will remain imperfect, the business case for investment in the repair and conservation of coastal seascapes is compelling. We outline priorities for further research to make the business case more tangible to policy makers, stakeholders and the general public.

  • Estimates of the value of habitats can provide an objective basis for the prioritisation of conservation and restoration actions. Bivalve habitats, three-dimensional structures made of high-densities of bivales (most often oysters or mussels), their shells and other organisms, used to be a dominant habitat found in temperate and subtropical coastal waters. These habitats, provide a suite of ecosystem services such as habitat provision and food supply for many species, substrate stabilisation and shoreline protection, and water quaility improvements through their filter feeding. Bivalve habitat restoration is increasingly seen as an opportunity to return lost ecosystem services. In Australia, there is growing interest in bivalve habitat restoration, but there is a knowledge gap in regards to the services they provide. Here, we determined the habitat value of a historically dominant oyster species in Australia, Saccostrea glomerata. At remnant soft-sediment oyster reefs at four locations we estimated density, biomass, productivity and composition of mobile macroinvertebrate communities and compared these with adjacent ‘bare’ soft sediments, which typically replace ecologically extinct oyster reefs. The oyster reefs had a distinct assemblage of macroinvertebrates, with 30% higher densities, 5 times the biomass and almost 5 times the productivity of adjacent bare sediments. Infauna macroinvertebrate productivity was more than twice as high below oyster reefs, suggesting these reefs facilitate infaunal productivity. Crustaceans, an important food source for small fishes, were 13 times more productive on oyster reefs compared to adjacent bare sediments. These results demonstrate that oyster reefs provide an important habitat for macroinvertebrates and that restoration efforts are likely to provide significant returns in enhanced productivity.