Environmental Science and Management not elsewhere classified

14 record(s)
Type of resources
Contact for the resource
Provided by
From 1 - 10 / 14
  • Categories  

    This GIS layer is the product of interpreted multibeam acoustic data charaterising the distribution pattern of seafloor habitats at forty sampling sites within the Flinders Commonwealth Marine Reserve. The three classes that were mapped include hard, mixed and soft substrate. Mappin the Flinders CMR is a prerequisite to understanding the relationships between inshore (shelf) and offshore (slope) habitats and therefore representing a key element in developing effective management for the depth strata across the entire CMR. Habitat characterisation provides the underlying spatial framework for developing models of habitat dynamics, trophic interactions and spatial distribution of marine biodiversity.

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project D8 - "Canyon mapping & biodiversity in Gascoyne Marine Park". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Very little is known about the deep waters of Australia’s marine parks. Recent NESP-supported surveys have targeted eastern abyssal depths and Tasmanian seamounts (NESP Project D4), but there have been no similar efforts in Western Australia. To counter this information deficit, we plan to actively map and sample two significant and biologically unexplored submarine canyons (Cape Range and Cloates Canyon) in the habitat protection and multiple use zones of the Gascoyne Marine Park. Standard operating procedures for marine sampling (multibeam, survey design) will be followed, with other sampling platforms (e-DNA, ROV) informing future SOPs (NESP Project D2). Planned Outputs • ROV image library (to be archived with the Australian Marine Imagery Collection at NCI) • Derived bathymetric products (to be made available through Geoscience Australia website and linked to relevant portals, including the Marine Park Atlas and North-West Atlas) • Taxonomic identifications and associated metadata (to be made available online through Atlas of Living Australia (ALA) web portal) • Sanger genetic sequences and e-DNA sequences (to be lodged in databases such as NCBI’s Genbank, short read archive or DataDryad) • Multibeam data will be processed into bathymetric grids at Geoscience Australia and made available via the AusSeabed portal

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project D6 - "Socioeconomic benchmarks". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Social and economic values are key drivers for marine science and marine policy but are too rarely integrated with marine biodiversity monitoring programs. In close consultation with Parks Australia (PA) we will review existing metrics used to survey social and economic values associated with marine parks. This review will include consulting with national and international expertise and actively consulting with State and other Commonwealth agencies, some of whom are currently conducting reviews or have existing frameworks for surveying social and economic values (e.g Great Barrier Reef Marine Park Authority (GBRMPA), NSW Department of Primary Industries (DPI)). In collaboration with national partners and PA we will organise a national methods workshops to discuss and refine metrics and methods to quantify social and economic benchmarks for State and Australian Marine Parks (AMPs) and produce Standard Operating Procedure’s (SOP) relevant to AMPs taking into consideration the Department of the Environment and Energy’s (DoEE’s) environmental accounting processes and PA’s Monitoring, Evaluation, Reporting and Improvement (MERI) framework. Planned Outputs • SOP for measuring social and economic metrics for AMPs • Final report on essential (key) AMP social and economic metrics • Summaries of research and surveys made available through the Marine Parks Science Atlas

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project D5 - "A standardised national assessment of the state of coral and rocky reef biodiversity". For specific data outputs from this project, please see child records associated with this metadata. -------------------- This project will involve integration of a national suite of reef biota Underwater Visual Census (UVC) monitoring datasets (Reef Life Survey (RLS), University of Tasmania (UTAS), Australian Institute for Marine Science (AIMS), Parks Victoria (PV), SA Department of environment, water and natural resources (DEWNR)) to provide a comprehensive update to the state of Australian Reefs report for the next national State of the Environment Report. Maps and indicator trends will show changes in the health of rocky and coral reefs nationally from 2005 to 2020. The update will include addition of a new index which summarises the population trajectories for 600-1000 reef species nationally. Individual species trajectories will provide the only threat status information for the majority of these species, assisting future listing of previously unassessed species if significant declines are detected. Planned Outputs • Maps and trends in SoE indicators • Raw data underlying SoE analyses (data use agreement must be signed with AIMS for access to that data) • Various scientific papers

  • Spatially referenced underwater video transect data for Tasmanian coastal waters from the LWM (Low water mark) to 80 metres in depth or 1.5 kms from shore.

  • Raw acoustic data files for Tasmanian coastal waters from the LWM (Low water mark) to 40 metres in depth or 1.5 kms from shore.

  • Categories    

    Data represents marine bathymetry for Tasmanian coastal waters from the LWM (Low water mark) to 40 metres in depth or 1.5 kms from shore (whichever boundary is first identified).

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project D2 - "Standard Operating Procedures (SOPs) for survey design, condition assessment and trend detection". There are no data outputs anticipated for this project. -------------------- Understanding of the status and trends of indicators in Australia’s marine environment requires standardised monitoring, without which monitoring is unlikely to be comparable through time and space – status and trends are unlikely to be available. This project will build on the monitoring blueprint by providing foundation for Standard Operating Procedures in the collection and analysis of monitoring data. In particular, the project will 1) provide some delineation of what kind of monitoring is required (and when), 2) providing a simple tool for designing surveys in space that also analyses the resulting data, and 3) provide a worked end-to-end SOP example for a baited underwater video for collection of data in benthic key ecological features (including recommendations for field protocols to ensure ecological relevance). Planned Outputs • Standard Operating Protocol (SOPs) for deploying observation platforms, processing raw data and then analysing processed data for a set of ‘no regrets’ objectives. This includes clear recommendations about how to choose sampling locations and how to analyse the resulting survey data. • A piece of software (an R package) that implements spatially balanced designs. The software will require a minimal skill level. • A worked example, from a partner project, that will form the template for future surveys. • Scientific publications, which will be made publicly and freely available within 12 months of publication.

  • Categories    

    The Tasman Fracture CMR AUV survey was a pilot study undertaken in 2014/15 as part of the National Marine Biodiversity Hub's National monitoring, evaluation and reporting theme. The aim of this theme is to develop a blueprint for the sustained monitoring of the South-east Commonwealth Marine Reserve Network. The particular aim of the survey was to contribute to an inventory of the distribution and abundance of southern rock lobster (Jasus edwardsi). Data contained here represents the data collected from lobster potting component of the study. This includes lobster abundance, gender and length. Bycatch is also recorded.

  • Categories    

    This record describes the outputs of two different modelling exercises that were used to characterise the seafloor habitats for temperate Australian waters. The modelled area includes all shelf waters (<250m depth) in southern Australia south of the Tropic of Capricorn. Bioregional benthic habitat maps were constructed using (1) the Geoscience Australia 250m 2023 grid (ref); (2) ground-truthing observations derived from horizontally facing imagery from stereo-BRUV and BOSS camera systems; and (3) several physical datasets as covariates in model development (all oceanographic variables smoothed to 250m resolution). Source data is available from Geoscience Australia's eCat: (bathymetry), Squidle+: (benthic imagery annotations), and (3) AODN Portal: (IMOS oceanographic datasets). The specific subset of GA observations used in this modelling exercise is available from See the NESP Mac Project 2.1 final report for a description of the sampling design for ground-truthing observations and annotation technique. -----Functional Reef model (binomial)----- This model discriminates ‘functional reef’ from sediment (non-reef) ecosystem types. Functional reef is defined by this project as “any seabed area functioning as a reef, which may include dense beds of sessile invertebrates or molluscs”. This term was chosen because much of the continental shelf is dominated by sediment yet is stable enough to support emergent sessile biota that provide structure and resources for “reef-affiliated” species. The modelling approach uses a Bayesian representation of a Binomial generalised linear model. For ground-truthing benthic annotations, the following benthic categories were collapsed into the ‘functional reef’ classification: sessile invertebrates, bare rocky reef (consolidated), macroalgae, Amphibolis spp. and Thalassodendron spp. All other benthic classifications were assigned to the ‘non-reef’ category. -----Ecosystem Component model (multinomial)----- This model discriminates between five broad habitat types (hereafter ‘ecosystem components’): seagrass, macroalgae, sessile invertebrates, bare consolidated substrata, bare unconsolidated substrata. The modelling approach uses a Bayesian implementation of a Multinomial generalised linear model. For ground-truthing benthic annotations, benthic annotations for mobile species (e.g. echinodermata) were discarded. All remaining annotations were collapsed into the five broad ecosystem components. A selection of mapping (WMS) services are listed in the 'Downloads & Links' section of this record. See the 'Lineage' section for a full description of the data packages available for download, and for more visualisation options.