21 record(s)
Type of resources
Contact for the resource
Provided by
From 1 - 10 / 21
  • Policy and decision makers often seek guidance as to the benefits of conservation and repair of coastal seascapes, to justify and underpin any potential investments. Much is already known about the broad habitat and nursery values of seascapes among the science community, but there is also a need for estimation of clear and unambiguous market-based benefits that may arise from investment in repair. Recognising that this economic knowledge is imperfect for Australian seascapes, three case studies spanning tropical, subtropical and temperate environments explored the benefits in question. The case studies focus on saltmarsh habitats in particular, which have received very little investment in repair despite subtropical and temperate coastal saltmarsh listed as vulnerable ecological community under Australian Federal legislation. A subset of economically important species and conservative judgments were used to characterise the minimum potential economic benefit. For each of the case studies the conclusion was that while the biological information will remain imperfect, the business case for investment in the repair and conservation of coastal seascapes is compelling. We outline priorities for further research to make the business case more tangible to policy makers, stakeholders and the general public.

  • Adult and sub-adult Red handfish (Thymichthys politus) and Spotted handfish (Brachionichthys hirsutus) preserved specimens and underwater images were used for analysing morphometrics (comprising of specimens from the CSIRO Australian National Fish Collection and underwater images). Individuals were measured for the morphological traits using electronic callipers (±0.1 mm) for preserved specimens and using Image J software for digital records. Note digital image size calibration occurred using a ruler in images or from size taken in situ. The purpose was to investigate whether external morphometrics could be used to determine sex in handfishes.

  • Fish annotations of stereo Baited Remote Underwater Video and panoramic drop camera imagery, were completed as part of a report funded by the NESP Marine & Coastal Hub. This report focussed on an IUCN II zone in the South-west Corner Marine Park off the 'Capes region' near Margaret River. These data were analysed in EventMeasure using standard operating procedures for the annotation of remote stereo imagery.

  • The data describes number of vessels, engine power, gross tonnage and fishing effort by year (1950-2017), targeted functional group, and fishing gear. Fishing effort estimates were derived from country-level fishing fleet capacity data publicly available, following the method described in Rousseau et al (2019; and methods improvement reported in Rousseau et al. (in prep). The data coverage is global, but estimates are given at the Exclusive Economic Zone-, Large Marine Ecosystem-, and Food Agriculture Organisation-level. The data was collected for a wide range of uses, including to inform global and regional marine ecosystem models and to understand the long-term evolution of fishing and its socio-ecological implications in the global ocean.

  • This submission creates a static snapshot of data from the Autonomous Underwater Vehicle (AUV) and stereo-BRUV annotation data from the National Environmental Science Program (NESP) Elizabeth and Middleton Reef survey. More details on the survey can be found at

  • Categories    

    Dive surveys were conducted in 2014 and the same sites resurveyed annually until 2022 (excluding 2021), to establish a baseline and monitor the status of the critically endangered spotted handfish (Brachionichthys hirsutus) population. This dataset is a summary of all surveys season 2014 to 2022 (excluding 2021) in which the 11 sites across the Derwent Estuary and D'Entrecasteaux Channel were assessed. The data describes the search effort (transect length, swathed area) and counts of handfish observed on each transect, including size measurements (total length) and depth records for each sighted fish.

  • Categories    

    The data is the quantitative abundance of fish derived from underwater visual census methods involving transect counts at rocky reef sites around Tasmania. This data forms part of a larger dataset that also surveyed megafaunal invertebrate abundance and algal cover for the area. The aggregated dataset allows examination of changes in Tasmanian shallow reef floral and faunal communities over a decadal scale - initial surveys were conducted in 1992-1995, and again at the same sites in 2006-2007. There are plans for ongoing surveys. An additional component was added in the latter study - a boat ramp study looking at the proximity of boat ramps and their effects of fishing. We analysed underwater visual census data on fishes and macroinvertebrates (abalone and rock lobsters) at 133 shallow rocky reef sites around Tasmania that ranged from 0.6 - 131 km from the nearest boat ramp. These sites were not all the same as those used for the comparison of 1994 and 2006 reef communities. The subset of 133 sites examined in this component consisted of only those sites that were characterized by the two major algal (kelp) types (laminarian or fucoid dominated). Sites with atypical algal assemblages were omitted from the 196 sites surveyed in 2006. This study aimed to examine reef community data for changes at the community level, changes in species richness and introduced species populations, and changes that may have resulted from ocean warming and fishing. The methods are described in detail in Edgar and Barrett (1997). Primarily the data are derived from transects at 5 m depth and/or 10 m depth at each site surveyed. The underwater visual census (UVC) methodology used to survey rocky reef communities was designed to maximise detection of (i) changes in population numbers and size-structure (ii) cascading ecosystem effects associated with disturbances such as fishing, (iii) long term change and variability in reef assemblages.

  • Ecosystem data was collected as part of an integrated study of the continental shelf over a 2 and a half year period between November 2015 and January 2018. Data were collected bi-monthly through the spring to autumn (November, January, March, May). Stations were situated perpendicular to shelf bathymetry, ranging in depth from ~50 m to 100 m near the edge of the shelf and were located between 5 km and 15 km from land; encompassing from south Storm Bay, past the southern tip of Bruny Island and into the Southern Ocean (south-east Tasmania, Australia). Data collected focused on each trophic level, characterizing the zooplankton community, fish schools and marine predators. The overarching aim of the study was to investigate the effects of long term warming, and a marine heatwave event on zooplankton dynamics in terms of community response variables and the flow-on effects of changing lower-trophic level dynamics for top predators.

  • Interaction uncertainties between tidal energy devices and marine animals have the potential to disrupt the tidal energy industry as it advances. Best-practices for environmental impact assessments (EIAs) must be explored that are able to provide conclusive recommendations for mitigating environmental impact concerns of tidal energy developments. As the tidal energy industry is moving closer to commercial-scale array installations, the development of standardised EIAs would allow for potential impact concerns for the marine environment to be identified and minimised early in the site-development process. In an effort to help formulate a standardised EIA framework that addresses knowledge gaps in fish-current interactions at tidal energy candidate sites, this study investigated changes in fish aggregations in response to tidal currents at a tidal energy candidate site in Australia prior to turbine installation. Here, we present the dataset collected for this study that includes tidal current information from Acoustic Doppler Current Profiler (ADCP) measurements, volume backscattering strength from a four-frequency biological echosounder (Acoustic Zooplankton and Fish Profiler – AZFP) as an indicator for fish biomass, and fish aggregation metrics calculated from volume backscatter in post-processing. ADCP and AZFP were installed on a bottom-mounted mooring and engaged in a concurrent sampling plan for ~2.5 months from December 2018 to February 2019. The mooring was deployed in the Banks Strait, a tidal energy candidate site located in the northeast of Tasmania, Australia, at a location favourable for tidal turbine installations considering current speed, depth, substrate, sediment type and proximity to shore. The ADCP dataset includes current velocity and direction measurements at a 1 m vertical and 1-sec time intervals. The raw AZFP dataset includes volume backscattering strength collected at 4-sec time intervals with a vertical resolution of 0.072 m in raw, and 0.1 m in pre-processed form. Fish aggregation metrics were derived in post-processing and are presented by the minute along with corresponding environmental conditions for current speed, shear, temperature, diel stage, and tidal stage compiled from both AZFP and ADCP datasets.

  • This dataset describes the relative abundance of an assemblage of commercially exploited demersal fishes in northwestern Australia, mapped over a 30 arc-minute (0.5 degree) spatial grid. The data cover the period 1997-2006 and are derived from an analysis of commercial landings available through the Sea Around Us Project ( Further methodological details can be found in the following peer-reviewed publication, which applies the same analysis to a suite of mobile pelagic species: Bouchet PJ, Meeuwig JJ, Huang Z, Letessier TB, Nichol SL, Caley MJ, Watson RA. 2016. Continental-scale hotspots of pelagic fish abundance inferred from commercial catch records. Global Ecology and Biogeography. Below is a full list of species/genera/families considered, with their respective contributions to the total catch (%): -------------------------------------------------- Mustelus -- 26.1948% Platycephalidae -- 23.3191% Seriolella -- 10.8968% Sillaginidae -- 9.4242% Genypterus blacodes -- 5.8347% Pristiophorus -- 4.4934% Tetraodontidae -- 4.3235% Nemadactylus -- 4.2784% Squatinidae -- 3.6071% Mugilidae -- 3.181% Sparidae -- 2.7037% Chelidonichthys kumu -- 0.7146% Rajiformes -- 0.4497% Pterygotrigla polyommata -- 0.3911% Scorpaenidae -- 0.1292% Callorhinchus milii -- 0.0367% Rhombosolea -- 0.0046% Pleuronectiformes -- 0.0034% Leiognathidae -- 0.003% Lates calcarifer -- 0.0029% Ariidae -- 0.0025% Sciaenidae -- 0.0017% Nemipteridae -- 0.0014% Nemipterus -- 0.0014% Upeneus -- 0.001% Data will be attached to this record once analyses are completed, est. December 2016.