WATER QUALITY
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
This record provides an overview of the NESP Marine and Coastal Hub scoping study - "Research needs for assessment and monitoring of nutrients, chemicals and antimicrobials in the marine environment". No data outputs were generated by this project. -------------------- Coastal water quality is threatened by an increasing volume of chemicals produced and used in our modern lives. These chemicals are commonly incorporated into pharmaceuticals and household items, and subsequently discharged into coastal areas from a broad range of point sources. Recently emerging contaminants include a variety of chemical (e.g. heavy metals, pharmaceuticals, pesticides, nutrients) and microbiological (e.g. pathogens, antibiotic resistant microbes) sources that are discharged in sewage, stormwater, estuarine flows and industrial wastes. For many of these chemicals, our understanding of their environmental concentrations and biological effects is limited. When new scientific information emerges to suggest that a particular contaminant may be hazardous, this is refered to as a contaminant of emerging concern (CEC). There is limited data about the environmental occurrence and biological effects of CECs, but emerging research suggests they have the capacity to be toxic. With an increasing list of CECs detected in the environment, important questions remain unanswered around which contaminants and scientific knowledge gaps should be prioritised. This desktop study engaged CEC stakeholders from academic research, government, water utilities, and non-government organisations to collaboratively identify priority CEC issues in Australia’s marine ecosystems. The project delivers a risk-based framework for future CEC research directions and water quality management priorities. Outputs • Final Project Report [written]
-
This record provides an overview of the NESP Marine and Coastal Hub Research Plan 2024 project "Environmental concentrations of emerging contaminants in coastal stormwater". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Australia’s Waste Policy Action Plan, Threat Abatement Plan for the impacts of marine debris and Australia’s One Health Master Action Plan all refer to the need for emerging pollutants to be incorporated into contaminant guidelines. A scoping study conducted by NESP MaC Hub in 2022 (Project 1.16) determined there is a clear and consistent need for data on environmental concentrations of contaminants of emerging concern (CECs) and an assessment of their impact on ecological communities. To build an evidence-based understanding of the environmental concentrations of these contaminants and their ecological significance in Australian coastal waters, NESP MaC Project 2.4 was co-designed with end-users to determine environmental concentrations and potential ecological effects at selected wastewater treatment plant outfalls. In 2023, end-users stated a need for improving the temporal and spatial resolution of the current project. Project 2.4 used outputs of oceanographic simulations and other information to identify a small set of locations for sampling that are representative of a range of receiving water contexts. Spatial surveys of contaminants of emerging concern (CECs) in water and sediments were undertaken during the dry period to limit the potential for stormwater inputs, and only one time period was sampled. An implicit assumption of the sampling design was that stormwater also contains CECs and could confound the assessment of contaminants in wastewater. This project (4.22) is an extension of Project 2.4 and will determine the concentration of emerging pollutants in coastal stormwater, and in wastewater treatment plant (WWTP) effluent, and do so on a seasonal basis. Sampling will be undertaken in two key locations: Gamay (NSW) and Glenelg (South Australia). These are the same locations sampled in Project 2.4 (with a focus on WWTPs) which will enable the concentrations of CECs to be compared at stormwater locations. Outputs • Updates to the National Outfall Database for 2022/23, including proposed new attributes for collection [dataset] • Data from Gamay (Botany Bay) NSW including (1) contaminant levels in water and sediments (2) physico-chemical data; (3) microbial community and genetics composition of water and sediments [dataset] • Timeseries (seasonal) CEC data from wastewater effluent at Glenelg beach area (SA) [dataset] • [Possible] High-resolution temporal CEC data from a stormwater event in St Vincents Gulf [dataset] • Final project report [written]
-
This study considered a range of water-column and sediment (benthos) based variables commonly used to monitor estuaries,utilising estuaries on the North-West Coast of Tasmania (Duck, Montagu, Detention, and Black River). These included: salinity, dissolved oxygen, turbidity, nutrient and chlorophyll a levels for the water-column; and sediment redox, organic carbon content, chlorophyll a and macroinvertebrate community structure amongst the benthos. In addition to comparing reference with impacted estuaries, comparisons were also made across seasons, commensurate with seasonal changes in freshwater river input, and between regions within estuaries (upper and lower reaches) - previously identified in Hirst et al. (2005). This design enabled us to examine whether the detection of impacts (i.e. differences between reference and impacted systems) was contingent on the time and location of sampling or independent of these factors. The data represented by this record was collected in the Detention River.
-
Physical and chemical parameters at five Pacific oyster (Crassostrea gigas) growing areas in Tasmania - Pittwater, Pipeclay Lagoon, Little Swanport, Georges Bay and Simpsons Bay - were measured as part of a study to determine the carrying capacity of the areas for oyster farming. The data represented by this record, was collected in Little Swanport. This has provided valuable environmental data for these areas. The hydrodynamic regimes at each area except Simpsons Bay were studied, including high and low water volumes, flushing rates, flow rates and depth contours. Temperature, salinity and concentrations of nitrates, phosphates, silicates and chlorophyll a were measured monthly at several sites in each area. The change in these parameters over different time scales also was examined at two sites in Pittwater and indicated temporal and spatial variability in the environmental parameters measured.
-
Physical and chemical parameters at five Pacific oyster (Crassostrea gigas) growing areas in Tasmania - Pittwater, Pipeclay Lagoon, Little Swanport, Georges Bay and Simpsons Bay - were measured as part of a study to determine the carrying capacity of the areas for oyster farming. The data represented by this record, was collected in Simpsons Bay. This has provided valuable environmental data for these areas. The hydrodynamic regimes at each area except Simpsons Bay were studied, including high and low water volumes, flushing rates, flow rates and depth contours. Temperature, salinity and concentrations of nitrates, phosphates, silicates and chlorophyll a were measured monthly at several sites in each area. The change in these parameters over different time scales also was examined at two sites in Pittwater and indicated temporal and spatial variability in the environmental parameters measured.
-
This study considered a range of water-column and sediment (benthos) based variables commonly used to monitor estuaries,utilising estuaries on the North-West Coast of Tasmania (Duck, Montagu, Detention, and Black River). These included: salinity, dissolved oxygen, turbidity, nutrient and chlorophyll a levels for the water-column; and sediment redox, organic carbon content, chlorophyll a and macroinvertebrate community structure amongst the benthos. In addition to comparing reference with impacted estuaries, comparisons were also made across seasons, commensurate with seasonal changes in freshwater river input, and between regions within estuaries (upper and lower reaches) - previously identified in Hirst et al. (2005). This design enabled us to examine whether the detection of impacts (i.e. differences between reference and impacted systems) was contingent on the time and location of sampling or independent of these factors. The data represented by this record was collected in the Black River.
-
Physical and chemical parameters at five Pacific oyster (Crassostrea gigas) growing areas in Tasmania - Pittwater, Pipeclay Lagoon, Little Swanport, Georges Bay and Simpsons Bay - were measured as part of a study to determine the carrying capacity of the areas for oyster farming. The data represented by this record, was collected in Pipeclay Lagoon. This has provided valuable environmental data for these areas. The hydrodynamic regimes at each area except Simpsons Bay were studied, including high and low water volumes, flushing rates, flow rates and depth contours. Temperature, salinity and concentrations of nitrates, phosphates, silicates and chlorophyll a were measured monthly at several sites in each area. The change in these parameters over different time scales also was examined at two sites in Pittwater and indicated temporal and spatial variability in the environmental parameters measured.
-
This study considered a range of water-column and sediment (benthos) based variables commonly used to monitor estuaries,utilising estuaries on the North-West Coast of Tasmania (Duck, Montagu, Detention, and Black River). These included: salinity, dissolved oxygen, turbidity, nutrient and chlorophyll a levels for the water-column; and sediment redox, organic carbon content, chlorophyll a and macroinvertebrate community structure amongst the benthos. In addition to comparing reference with impacted estuaries, comparisons were also made across seasons, commensurate with seasonal changes in freshwater river input, and between regions within estuaries (upper and lower reaches) - previously identified in Hirst et al. (2005). This design enabled us to examine whether the detection of impacts (i.e. differences between reference and impacted systems) was contingent on the time and location of sampling or independent of these factors. The data represented by this record was collected in the Montagu River.
-
Physical and chemical parameters at five Pacific oyster (Crassostrea gigas) growing areas in Tasmania - Pittwater, Pipeclay Lagoon, Little Swanport, Georges Bay and Simpsons Bay - were measured as part of a study to determine the carrying capacity of the areas for oyster farming. This has provided valuable environmental data for these areas. The hydrodynamic regimes at each area except Simpsons Bay were studied, including high and low water volumes, flushing rates, flow rates and depth contours. Temperature, salinity and concentrations of nitrates, phosphates, silicates and chlorophyll a were measured monthly at several sites in each area. The change in these parameters over different time scales also was examined at two sites in Pittwater and indicated temporal and spatial variability in the environmental parameters measured.
-
Physical and chemical parameters at five Pacific oyster (Crassostrea gigas) growing areas in Tasmania - Pittwater, Pipeclay Lagoon, Little Swanport, Georges Bay and Simpsons Bay - were measured as part of a study to determine the carrying capacity of the areas for oyster farming. The data represented by this record, was collected in Georges Bay. This has provided valuable environmental data for these areas. The hydrodynamic regimes at each area except Simpsons Bay were studied, including high and low water volumes, flushing rates, flow rates and depth contours. Temperature, salinity and concentrations of nitrates, phosphates, silicates and chlorophyll a were measured monthly at several sites in each area. The change in these parameters over different time scales also was examined at two sites in Pittwater and indicated temporal and spatial variability in the environmental parameters measured.