From 1 - 10 / 24
  • Samples of Temperature and Salinity from a CTD profile have been measured at Station 6 in the Derwent Estuary between August 2012 and January 2013.

  • Antarctic Landfast sea ice (fast ice) is important climatologically, biologically and for logistics for short time-scale anomalies. Until recently, there hasn’t been an accurate, high-resolution fast ice extent dataset which can support an analysis on drivers of fast ice and most studies only investigate fast ice on limited regions of Antarctica in a limited time scale. There is a need to extend the spatial and temporal studying coverage to provide detailed information on the Antarctic coast over a longer period. This is the first detailed analysis to identify and quantify correlation between the environmental anomaly and fast ice anomaly mainly in the east Antarctic coast. By examining regional/local fast ice extent in in east Antarctic coast in the context of the broader and/or remote-teleconnected atmospheric circulation/properties using spatial correlation techniques, a strong correlation between NINO3 region and Lützow-Holm Bay fast ice and similar and significant correlation of regional scale factors from Lützow-Holm Bay to Mawson Coast mainly are found. The results of this thesis suggest that the pack ice, atmospheric factors and oceanic factors are important for interpreting fast ice anomalies. To identify and quantify correlation between the pack ice, temperature at 2m, wind at 10m, snow fall anomaly, sea surface temperature anomaly, ocean heat content anomaly and fast ice anomaly, backward multiple linear regression is conducted to demonstrate some predictive fast ice driver information by quantifying the correlation between different drivers and fast ice anomaly. The multiple linear regression also suggests that oceanic influences including pack ice are generally more important than atmospheric influences. Future experiments could be conducted to interpret fast ice anomalies in the context of the ocean mainly.

  • Physical and chemical parameters at five Pacific oyster (Crassostrea gigas) growing areas in Tasmania - Pittwater, Pipeclay Lagoon, Little Swanport, Georges Bay and Simpsons Bay - were measured as part of a study to determine the carrying capacity of the areas for oyster farming. The data represented by this record, was collected in Georges Bay. This has provided valuable environmental data for these areas. The hydrodynamic regimes at each area except Simpsons Bay were studied, including high and low water volumes, flushing rates, flow rates and depth contours. Temperature, salinity and concentrations of nitrates, phosphates, silicates and chlorophyll a were measured monthly at several sites in each area. The change in these parameters over different time scales also was examined at two sites in Pittwater and indicated temporal and spatial variability in the environmental parameters measured.

  • Physical and chemical parameters at five Pacific oyster (Crassostrea gigas) growing areas in Tasmania - Pittwater, Pipeclay Lagoon, Little Swanport, Georges Bay and Simpsons Bay - were measured as part of a study to determine the carrying capacity of the areas for oyster farming. The data represented by this record, was collected in Pipeclay Lagoon. This has provided valuable environmental data for these areas. The hydrodynamic regimes at each area except Simpsons Bay were studied, including high and low water volumes, flushing rates, flow rates and depth contours. Temperature, salinity and concentrations of nitrates, phosphates, silicates and chlorophyll a were measured monthly at several sites in each area. The change in these parameters over different time scales also was examined at two sites in Pittwater and indicated temporal and spatial variability in the environmental parameters measured.

  • A 12-month program was developed and implemented in order to obtain baseline information on water quality (salinity, water temperature, dissolved oxygen, turbidity, pH, dissolved nutrients, silica), ecological condition as shown by Chlorophyll a, benthic macroinvertebrates, pathogens, and habitat extent determined from habitat mapping. Five key estuaries and coastal waters were assessed in the Southern NRM Region of Tasmania. The data represented by this record was collected in Pitt Water / Orielton Lagoon.

  • A total of 111 estuaries of moderate or large size were recognised around Tasmania and associated Bass Strait islands. The catchments of these estuaries were mapped using GIS, and available data on geomorphology, geology, hydrology and rainfall collated for each estuary and catchment area. Tasmanian estuaries were classified into nine groups on the basis of physical attributes that included salinity and tidal data collected during a field sampling program. Baseline information on the abundance, biomass and estimated production of macrobenthic invertebrate species was collected during a quantitative sampling program at 55 sites in 48 Tasmanian estuaries. These data were generally obtained at three different intertidal levels and two shallow subtidal depths at each site, and included information on a total of 390 taxa and over 100,000 individuals. Data on the distribution of 101 fish species, as obtained during surveys of 75 Tasmanian estuaries using seine nets by Last (1983) with some supplementary sampling, were also incorporated into the study.

  • A 12-month program was developed and implemented in order to obtain baseline information on water quality (salinity, water temperature, dissolved oxygen, turbidity, pH, dissolved nutrients, silica), ecological condition as shown by Chlorophyll a, benthic macroinvertebrates, pathogens, and habitat extent determined from habitat mapping. Five key estuaries and coastal waters were assessed in the Southern NRM Region of Tasmania. The data represented by this record was collected in Port Cygnet.

  • Physical and chemical parameters at five Pacific oyster (Crassostrea gigas) growing areas in Tasmania - Pittwater, Pipeclay Lagoon, Little Swanport, Georges Bay and Simpsons Bay - were measured as part of a study to determine the carrying capacity of the areas for oyster farming. The data represented by this record was collected from Pittwater. This has provided valuable environmental data for these areas. The hydrodynamic regimes at each area except Simpsons Bay were studied, including high and low water volumes, flushing rates, flow rates and depth contours. Temperature, salinity and concentrations of nitrates, phosphates, silicates and chlorophyll a were measured monthly at several sites in each area. The change in these parameters over different time scales also was examined at two sites in Pittwater and indicated temporal and spatial variability in the environmental parameters measured.

  • This study considered a range of water-column and sediment (benthos) based variables commonly used to monitor estuaries,utilising estuaries on the North-West Coast of Tasmania (Duck, Montagu, Detention, and Black River). These included: salinity, dissolved oxygen, turbidity, nutrient and chlorophyll a levels for the water-column; and sediment redox, organic carbon content, chlorophyll a and macroinvertebrate community structure amongst the benthos. In addition to comparing reference with impacted estuaries, comparisons were also made across seasons, commensurate with seasonal changes in freshwater river input, and between regions within estuaries (upper and lower reaches) - previously identified in Hirst et al. (2005). This design enabled us to examine whether the detection of impacts (i.e. differences between reference and impacted systems) was contingent on the time and location of sampling or independent of these factors. The data represented by this record was collected in the Duck Bay.

  • Physical and chemical parameters at five Pacific oyster (Crassostrea gigas) growing areas in Tasmania - Pittwater, Pipeclay Lagoon, Little Swanport, Georges Bay and Simpsons Bay - were measured as part of a study to determine the carrying capacity of the areas for oyster farming. The data represented by this record, was collected in Simpsons Bay. This has provided valuable environmental data for these areas. The hydrodynamic regimes at each area except Simpsons Bay were studied, including high and low water volumes, flushing rates, flow rates and depth contours. Temperature, salinity and concentrations of nitrates, phosphates, silicates and chlorophyll a were measured monthly at several sites in each area. The change in these parameters over different time scales also was examined at two sites in Pittwater and indicated temporal and spatial variability in the environmental parameters measured.