EARTH SCIENCE | BIOSPHERE | ECOSYSTEMS | AQUATIC ECOSYSTEMS | PLANKTON | PHYTOPLANKTON
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
A compilation of existing literature on the characteristics of Southern Ocean diatom species.
-
Collection of processed BGC-Argo float profiles, used to calculate phytoplankton phenology from chlorophyll, phytoplankton carbon and nitrate.
-
The CSIRO’s Oceans & Atmosphere Shallow Survey Internal Facility (SSIF) was contracted by the Institute for Marine and Antarctic Studies (IMAS) of the University of Tasmania (UTAS) in collaboration with Parks Australia, to undertake a hydrographic survey of the Boags Commonwealth Marine Reserve in the southwestern Bass Strait. This site was surveyed in conjunction with other smaller sites for Petuna Aquaculture, as part of a broader survey campaign. All of the sites covered in this campaign are located in the vicinity of the Hunter Group of Islands, off the north-western coast of Tasmania.
-
These data are from a voyage (IN2019_V01) on RV Investigator with the Australian Antarctic Division (AAD), that took place during January-March 2019. The Chief Scientist was Mike Double from the AAD. Clara R. Vives collected biogeochemical data on the voyage, and performed a series of incubation experiments for her PhD. The purpose of the study was to investigate the effects of iron and light on phytoplankton growth off East Antarcitca. Data include CTD nutrients, chlorophyll and oxygen as well as underway phytoplankton physiology (measured as the photochemical efficiency) and pCO2. Some data are duplicated but not in exactly the same format on the CSIRO Data Trawler.
-
These files contain the data recorded from a mesocosm experiment conducted in Bergen, Norway 2022 which assessed the effect of simualted mineral-based (silicate or calcium) ocean alkalinity enhancement (OAE) on diatom silicification. Ten mesocosms were used in total, divided into two groups either the silicate- or calcium based group and alkalinity was increased by either 0, 150, 300, 450 or 600 µmol L-1 above natrually occuring levels. The PDMPO-fluorescence (an appropriate proxy for silicification) of diatoms was recorded on eight seperate days during the experiment. Accompanying data includes measured; macronutrients (nitrate, nitrite, phophate, silicate), total alkalinity, biogenic silica in the water column and sediment trap.
-
Biological ocean data collected from ships find reuse in aggregations of historical data. These data are heavily relied upon to document long term change, validate satellite algorithms for ocean biology and are useful in assessing the performance of autonomous platforms and biogeochemical models. There is a need to combine subsurface biological and physical data into one aggregate data product to support reproducible research. Existing aggregate products are dissimilar in source data, have largely been isolated to the surface ocean and most omit physical data. These products cannot easily be used to explore subsurface bio-physical relationships. We present the first version of a biological ocean data reformatting effort (BIO-MATE, https://gitlab.com/KBaldry/BIO-MATE). BIO-MATE uses R software that reformats openly sourced published datasets from oceanographic voyages. These reformatted biological and physical data from underway sensors, profiling sensors and pigments analysis are stored in an interoperable and reproducible BIO-MATE data product for easy access and use.
-
The effect of ocean alkalinity enhancement on a coastal phytoplankton community was assessed via a microcosm experiment. The effect of alkalinity enhancement in two scenarios (i) when enclosed seawater was in equilibrium with atmospheric CO2 and (ii) when enclosed seawater was not in equilibrium with atmospheric CO2 were explored. Alkalinity was increased by ~497 umol/kg in these two treatments and plankton communities, carbonate chemistry, dissolved inorganic nutrients, particulate matter and chlorophyll a dynamics monitored over a 22 day period where a spring bloom occurred.
-
Phytoplankton productivity in the polar Southern Ocean (SO) plays an important role in the transfer of carbon from the atmosphere to the ocean’s interior, a process called the biological carbon pump, which helps regulate global climate. SO productivity in turn is limited by low iron, light, and temperature, which restrict the ef- ficiency of the carbon pump. Iron and light can colimit productivity due to the high iron content of the photosynthetic photosystems and the need for increased photosystems for low-light acclimation in many phytoplankton. Here we show that SO phytoplankton have evolved critical adaptations to enhance photosynthetic rates under the joint constraints of low iron, light, and temperature. Under growth-limiting iron and light levels, three SO species had up to sixfold higher photosynthetic rates per photosystem II and similar or higher rates per mol of photosynthetic iron than tem- perate species, despite their lower growth temperature (3 vs. 18 °C) and light intensity (30 vs. 40 μmol quanta·m2·s−1), which should have decreased photosynthetic rates. These unexpectedly high rates in the SO species are partly explained by their unusually large photosynthetic antennae, which are among the largest ever recorded in marine phytoplankton. Large antennae are disadvan- tageous at low light intensities because they increase excitation energy loss as heat, but this loss may be mitigated by the low SO temperatures. Such adaptations point to higher SO production rates than environmental conditions should otherwise permit, with implications for regional ecology and biogeochemistry.
-
Zooplankton was counted and identified from three sites over the 5-year period. The net used (200 m Bongo net) was designed to catch meso-zooplankton with an integrated vertical tow through the water column. One net from each of the paired Bongo samples was analysed and the data expressed as numbers per m3. Copepods dominated the zooplankton, with other groups such as salps, krill, appendicularians, cladocerans, chaetognaths and meroplanktonic larvae being seasonally dominant.
-
Phytoplankton was counted and identified from five sites over the 5-year period. Annual cycles in abundance are available (as cells mL-1), along with detailed species identification. Cell measurements and approximate geometric shape were also recorded for the calculation of biovolume (μL cell-1). Diatoms and dinoflagellates dominated the samples in terms of biomass, however, small cells were also very abundant throughout each year. The data are restricted to an integrated sample from the top 12 m of the water column. Fluorescence profiles elsewhere in this dataset can provide an indication of phytoplankton presence lower in the water column.