From 1 - 3 / 3
  • Phytoplankton productivity in the polar Southern Ocean (SO) plays an important role in the transfer of carbon from the atmosphere to the ocean’s interior, a process called the biological carbon pump, which helps regulate global climate. SO productivity in turn is limited by low iron, light, and temperature, which restrict the ef- ficiency of the carbon pump. Iron and light can colimit productivity due to the high iron content of the photosynthetic photosystems and the need for increased photosystems for low-light acclimation in many phytoplankton. Here we show that SO phytoplankton have evolved critical adaptations to enhance photosynthetic rates under the joint constraints of low iron, light, and temperature. Under growth-limiting iron and light levels, three SO species had up to sixfold higher photosynthetic rates per photosystem II and similar or higher rates per mol of photosynthetic iron than tem- perate species, despite their lower growth temperature (3 vs. 18 °C) and light intensity (30 vs. 40 μmol quanta·m2·s−1), which should have decreased photosynthetic rates. These unexpectedly high rates in the SO species are partly explained by their unusually large photosynthetic antennae, which are among the largest ever recorded in marine phytoplankton. Large antennae are disadvan- tageous at low light intensities because they increase excitation energy loss as heat, but this loss may be mitigated by the low SO temperatures. Such adaptations point to higher SO production rates than environmental conditions should otherwise permit, with implications for regional ecology and biogeochemistry.

  • Categories    

    Phytoplankton indirectly influence climate through their role in the ocean biological carbon pump. In the Southern Ocean, the subantarctic zone represents an important carbon sink, yet variables limiting phytoplankton growth are not fully constrained. Using three shipboard bioassay experiments on three separate voyages, we evaluated the seasonality of iron (Fe) and manganese (Mn) co-limitation of subantarctic phytoplankton growth south of Tasmania, Australia. We observed a strong seasonal variation in a phytoplankton Fe limitation signal, with a summer experiment showing the greatest response to Fe additions. An autumn experiment suggested that other factors co-limited phytoplankton growth, likely low silicic acid concentrations. The phytoplankton responses to Mn additions were subtle and readily masked by the responses to Fe. Using flow cytometry, we observed that Mn may influence the growth of some small phytoplankton taxa in late summer/autumn, when they represent an important part of the phytoplankton community. In addition, Mn induced changes in the bulk photophysiology signal of the spring community. These results suggest that the importance of Mn may vary seasonally, and that its control on phytoplankton growth may be associated with specific taxa.

  • Categories    

    Southern Ocean phytoplankton growth is limited by low iron (Fe) supply and irradiance, impacting the strength of the biological carbon pump. Unfavourable upper ocean conditions such as low nutrient concentrations can lead to the formation of deep chlorophyll or biomass maxima (DCM/DBM). While common in the Southern Ocean, these features remain under-studied due to their subsurface location. To increase our understanding of their occurrence, we studied the responses of phytoplankton communities from a Southern Ocean DCM to increasing light, Fe, and manganese (Mn) levels. The DCM communities were light- and Fe-limited, but light limitation did not increase phytoplankton Fe requirements. The greatest physiological responses were observed under combined Fe/light additions, which stimulated macronutrient drawdown, biomass production and the growth of large diatoms. Combined Mn/light additions induced subtle changes in Fe uptake rates and community composition, suggesting species-specific Mn requirements. These results provide valuable information on Southern Ocean DCM phytoplankton physiology.