Keyword

underwater cameras

29 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 29
  • The GBR10 benthic habitat type map is the output of a modelling process that combines satellite imagery and other environmental attributes like water depth, slope and wave climate, along with known occurrences of benthic habitat type. The occurrences of benthic habitat type were derived through machine learning applied to geolocated photos of the benthos (>100,000 photos) that were collected along reef flats and reef slopes at various offshore shallow reefs (~100 reefs). The modelling process involves taking those occurrences of benthic habitat at known locations (training data) and using a machine learning model to build a relationship between benthic habitat type and the underlying data layers (imagery, depth, slope, waves). Because the data layers cover the whole Great Barrier Reef, a prediction is then able to be made for benthic habitat across the whole Great Barrier Reef as well. Contextual editing was then used to make changes to the map, based on a set of geomorphology- and ecology-based rules, such as what environment a class can occur in and what classes are able to neighbour each other (object-based rulesets). This map covers the “offshore” or “mid and outer-shelf” reefs of the Great Barrier Reef Marine Park. Some of the occurrences of benthic habitat type are withheld from the process, and used to check how well the mapping performed at the end (validation). The mapping was carried out by the Remote Sensing Research Centre at the University of Queensland. The scientific method for generating the benthic habitat map can be briefly described as: 1. Ingestion of Sentinel-2 satellite image data, bathymetry and wave climate data derived from Sentinel-2 image data, and various additional derived environmental covariates into Google Earth Engine 2. Stacking of the input data sources into a model-ready environment 3. Running a segmentation routine to create image objects 4. Fitting a supervised machine learning model (e.g. random forest) to known occurrences in order to classify segments into benthic classes 5. Application of object based rules using a range of colour, shape texture and relationship rules to modify the class attribution 6. Validation of mapping accuracy and performance This is an snapshot of the GBR10 benthic dataset taken on Jan 2023 for the Seamap Australia project from the GBRMP Reef Knowledge System (https://reefiq.gbrmpa.gov.au/ReefKnowledgeSystem), see also https://gbrmpa.maps.arcgis.com/home/item.html?id=492a87d95e8243728486718e7aed02a8. An updated version of the data may be available from the source provider.

  • Categories    

    In 2014, UniDive (The University of Queensland Underwater Club) conducted an ecological assessment of the Point Lookout Dive sites for comparison with similar surveys conducted in 2001 - the PLEA project. Involvement in the project was voluntary. Members of UniDive who were marine experts conducted training for other club members who had no, or limited, experience in identifying marine organisms and mapping habitats. Since the 2001 detailed baseline study, no similar seasonal survey has been conducted. The 2014 data is particularly important given that numerous changes have taken place in relation to the management of, and potential impacts on, these reef sites. In 2009, Moreton Bay Marine Park was re-zoned, and Flat Rock was converted to a marine national park zone (Green zone) with no fishing or anchoring. In 2012, four permanent moorings were installed at Flat Rock. Additionally, the entire area was exposed to the potential effects of the 2011 and 2013 Queensland floods, including flood plumes which carried large quantities of sediment into Moreton Bay and surrounding waters. The population of South East Queensland has increased from 2.49 million in 2001 to 3.18 million in 2011 (BITRE, 2013). This rapidly expanding coastal population has increased the frequency and intensity of both commercial and recreational activities around Point Lookout dive sites (EPA 2008). Habitats were mapped using a combination of towed GPS photo transects, aerial photography and expert knowledge. This data provides georeferenced information regarding the major features of each of the Point Lookout Dive Sites.

  • Categories    

    An object based image analysis approach (OBIA) was used to create a habitat map of Lizard Island reef, Queensland. Georeferenced dive and snorkel photo-transect surveys were conducted at different locations surrounding Lizard Island. Dominant benthic or substrate cover type was assigned to each photo by placing 24 points random over each image. Each point was then assigned a dominant cover type using a benthic cover type classification scheme containing nine first-level categories - seagrass high (>=70%), seagrass moderate (40-70%), seagrass low (<= 30%), coral, reef matrix, algae, rubble, rock and sand. The OBIA class assignment followed a hierarchical assignment based on membership rules with levels for "reef", "geomorphic zone" and "benthic community" (above). This record contains a snapshot of the data taken for use in Seamap Australia (a national benthic habitat map; https://seamapaustralia.org). View the original record at: https://doi.pangaea.de/10.1594/PANGAEA.864209

  • Aquatic flora surveys of the Hardy Inlet were conducted from the top of Molloy Island and the Scott River Basin to the mouth of the Inlet. Surveys were initially conducted in 2008 by Murdoch University’s Marine and Freshwater Research Laboratory (MAFRL) and forms part of the 2013 report "Synthesis of seagrass mapping studies" conducted by the Water Science Branch of the Department of Water. This data was acquired by the ACEAS Seagrass Group as part of the 2013 Australia-wide risk assessment of Seagrass. Surveys were conducted again in 2018, 2020 & 2023 by the Department of Water and Environmental Regulation as "Hardy Inlet Seagrass Survey". The datasets making up the 2008 Hardy Inlet seagrass survey data are: WA_MAFRL_Hardy_seagrass_polygons - polygon dataset showing interpolated percentage cover of Ruppia spp. This record provides access to the initial MAFRL surveys. See associated DWER records in Data WA catalogue for access to newer surveys at this site.

  • Categories    

    The aim of this study was to create a seagrass presence/absence map for the optically complex waters of Moreton Bay. The capability to map seagrass meadows in waters of varying clarity using a consistent and repeatable method is an invaluable resource for conservation and management of seagrass regionally and globally. The map was created using an adaptation of a Google Earth Engine (GEE) cloud processing and machine learning algorithm which for seagrass, utilized citizen science spot check field data, Landsat 8 OLI imagery pulled directly from GEE, a bathymetry layer (30 m), slope derived from depth and a coral mask. This dataset consists of a shapefile that shows seagrass presence (≥ 25 % cover) and substrate mapped simultaneously for the turbid waters of the Western Bay coastline and the optically clear waters of the Eastern Banks, Moreton Bay, Queensland, Australia. This record contains a snapshot of the data taken for use in Seamap Australia (a national benthic habitat map; https://seamapaustralia.org). View the original record at: https://doi.pangaea.de/10.1594/PANGAEA.937501

  • Aquatic flora surveys were conducted in the Leschenault Estuary in April 2009. This data is part of the 2013 report "Synthesis of seagrass mapping studies" conducted by the Water Science Branch of the Department of Water. Surveys were initially conducted by the WA Department of Water together with Geoscience Australia. The objective of these surveys was to collect baseline data on seagrass composition and distribution in key estuaries of southern and south-western WA. This data was acquired by the ACEAS Seagrass Group as part of the 2013 Australia-wide risk assessment of Seagrass. Surveys were conducted again 2015-2023 (February 2015, February and March 2016, February 2017, February and March 2018, February 2019, February and March 2020, February 2021, February and March 2022, and February and March 2023) by the Department of Water and Environmental Regulation as "Leschenault Estuary Seagrass Survey". The datasets making up the 2009 Leschenault Estuary seagrass survey data are: WA_Leschenault_SAV_sites - point dataset of species presence/absence and survey methodology at each site. WA_Leschenault_SAV_polygons - polygon dataset showing interpolated percentage cover in polygons derived from site points. This record provides access to the initial WA DoW surveys. See associated DWER records in Data WA catalogue for access to newer surveys at this site.

  • The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including Point Ann, a site which lies within the Fitzgerald Biosphere, a UNESCO designated International Biosphere Reserve and one of the largest and biologically significant National Parks in Australia (DEC) on West Australia’s south coast, approximately 180km east of Albany.

  • Categories    

    The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. This project record provides linkage to each of metadata records describing data collected from the 9 study areas: Jurien Bay, Rottnest, Abrolhos Islands, Point Ann, Middle Island, Mount Gardner, Broke Inlet, and Geographe Bay​. To access the source datasets from each study site in their original (unaggregated) form, see child records linked to this parent record.

  • Categories    

    This record describes data collected for the 2013 report "Synthesis of seagrass mapping studies conducted by the Water Science Branch of the Department of Water", and collected more recently by the Department of Water and Environmental Regulation ongoing monitoring. This project record provides linkage to each of metadata records describing seagrass data collected from the 11 study areas: Beaufort Inlet (2009), Hardy Inlet (2008), Irwin Inlet (2009), Leschenault Estuary (2009), Oyster Harbour (1988, 1996, 2006), Princess Royal Harbour (1996, 2006) Stokes Inlet (2009), Swan Canning (2011), Walpole Nornalup Inlets (2009), Wellstead Estuary (2009), Wilson Inlet (2007, 2008). Additional monitoring data is available from the WA DWER seagrass group via https://data.wa.gov.au for the following study areas: Leschenault Estuary (2014-2023), Peel Harvey Estuary (2021), Hardy Inlet (2018, 2020, 2023), Wilson Inlet (2017-2022), Wilson Inlet (2017-2022), Oyster Harbour (2019, 2021), Princess Royal Harbour (2021). To access the source datasets from the 2013 Synthesis for each study site/sampling occasion in their original (unaggregated) form, see child records linked to this parent record.

  • Categories    

    In 2002, aerial photography of the Perth metropolitan coastal waters was purpose-flown to obtain high quality imagery of the benthic habitats. This imagery was used to map the coverage of vegetated areas in two selected areas of Cockburn Sound: Southern Flats and Eastern Shoal. Areas of relatively poor visibility, such as the Eastern Shelf, are difficult to map with confidence using these techniques. A ground-truthing survey was undertaken in 2004 to map the seagrass and reef habitats on the Eastern Shelf utilising sidescan sonar, towed video and spot dives.