Keyword

EARTH SCIENCE | OCEANS | OCEAN CHEMISTRY | CARBON DIOXIDE

7 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 7 / 7
  • These files contain the data recorded from a mesocosm experiment conducted in Bergen, Norway 2022 which assessed the effect of simualted mineral-based (silicate or calcium) ocean alkalinity enhancement (OAE) on diatom silicification. Ten mesocosms were used in total, divided into two groups either the silicate- or calcium based group and alkalinity was increased by either 0, 150, 300, 450 or 600 µmol L-1 above natrually occuring levels. The PDMPO-fluorescence (an appropriate proxy for silicification) of diatoms was recorded on eight seperate days during the experiment. Accompanying data includes measured; macronutrients (nitrate, nitrite, phophate, silicate), total alkalinity, biogenic silica in the water column and sediment trap.

  • Categories    

    These data are from a voyage (IN2019_V01) on RV Investigator with the Australian Antarctic Division (AAD), that took place during January-March 2019. The Chief Scientist was Mike Double from the AAD. Clara R. Vives collected biogeochemical data on the voyage, and performed a series of incubation experiments for her PhD. The purpose of the study was to investigate the effects of iron and light on phytoplankton growth off East Antarcitca. Data include CTD nutrients, chlorophyll and oxygen as well as underway phytoplankton physiology (measured as the photochemical efficiency) and pCO2. Some data are duplicated but not in exactly the same format on the CSIRO Data Trawler.

  • Categories    

    These data are from a piggy back voyage to IN2018_V05, October-November 2018. The Chief Scientists were Helen Phillips and Nathan Bindoff. Nic Pittman and Clara Vives collected biogeochemical data on the voyage, and Xiang Yang used these data in his Hons thesis 2020-2021. The purpose of the study was to investigate biogeochemical variability in the region of the Polar Front meander south of Tasmania. Data include CTD nutrients, chlorophyll and oxygen as well as underway phytoplankton physiology and pCO2. Some data are duplicated but not in exactly the same format on the CSIRO Data Trawler.

  • The effect of ocean alkalinity enhancement on a coastal phytoplankton community was assessed via a microcosm experiment. The effect of alkalinity enhancement in two scenarios (i) when enclosed seawater was in equilibrium with atmospheric CO2 and (ii) when enclosed seawater was not in equilibrium with atmospheric CO2 were explored. Alkalinity was increased by ~497 umol/kg in these two treatments and plankton communities, carbonate chemistry, dissolved inorganic nutrients, particulate matter and chlorophyll a dynamics monitored over a 22 day period where a spring bloom occurred.

  • Categories    

    Antarctic krill is a key component of Southern Ocean ecosystems and there is significant interest in identifying regions acting as sources for the krill population. We develop a mechanistic model combining thermal and food requirements for krill egg production, with predation pressure post-spawning, to predict regions that could support high larval production (spawning habitat). We optimise our model on regional data using a maximum likelihood approach and then generate circumpolar predictions of spawning habitat quality. The uploaded datasets represent model predictions of seasonal circumpolar spawning habitat quality of Antarctic krill as well as composite data of the circumpolar mean annual number of weeks in which modelled spawning habitat quality is higher than the summer 80th percentile.

  • -- Layton et al. Chemical microenvironments within macroalgal assemblages: implications for the inhibition of kelp recruitment by turf algae. Limnology & Oceanography. DOI:10.1002/lno.11138 -- Kelp forests around the world are under increasing pressure from anthropogenic stressors. A widespread consequence is that in many places, complex and highly productive kelp habitats have been replaced by structurally simple and less productive turf algae habitats. Turf algae habitats resist re-establishment of kelp via recruitment inhibition; however little is known about the specific mechanisms involved. One potential factor is the chemical environment within the turf algae and into which kelp propagules settle and develop. Using laboratory trials, we illustrate that the chemical microenvironment (O2 concentration and pH) 0.0–50 mm above the benthos within four multispecies macroalgal assemblages (including a turf-sediment assemblage and an Ecklonia radiata kelp-dominated assemblage) are characterised by elevated O2 and pH relative to the surrounding seawater. Notably however, O2 and pH were significantly higher within turf-sediment assemblages than in kelp-dominated assemblages, and at levels that have previously been demonstrated to impair the photosynthetic or physiological capacity of kelp propagules. Field observations of the experimental assemblages confirmed that recruitment of kelp was significantly lower into treatments with dense turf algae than in the kelp-dominated assemblages. We demonstrate differences between the chemical microenvironments of kelp and turf algae assemblages that correlate with differences in kelp recruitment, highlighting how degradation of kelp habitats might result in the persistence of turf algae habitats and the localised absence of kelp.

  • To understand the environmental impacts of added alkaline minerals on plankton communities, we enclosed natural coastal plankton communities using 53L microcosms and exposed these communities to ground factory slag (2g/53L) and olivine (100g/53L). The microcosms of seawater were kept at 13.5 °C with circulations. The biochemical changes and responses in microcosms were monitored and measured for 21 days. The measured parameters are pH, total alkalinity, temperature, macro-nutrients concentrations, total chlorophyll-a, flow cytometry data, POC/PON, BSi, Rapid Light Curves, zooplankton abundance, the dissolved trace metal concentrations, and the particulate trace metal concentrations.