Contact for the resource

IMAS Data Manager

49 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 49
  • 'Weather@home ANZ' is a global citizen science distributed computing project being run as part of the Oxford-based 'weather@home' project, which is part of 'climateprediction.net'. In this experiment, a detailed limited area (regional) climate model is embedded within the less detailed 'driving' global model. This higher-resolution regional model is able to tell us in unprecedented detail about potential changes to patterns of weather as climate changes. In the initial 'weather@home' experiment launched in 2010, the project team released this regional modelling capability for three regions: Europe, Southern Africa and the Western USA. This capability has been extended to other regions around the world and the first such new region to be developed was the Australasian region encompassing Australia, New Zealand and surrounding areas, which was launched to the public in 2014. This particular part of the project - 'weatherathome ANZ' - has received support from the University of Oxford (U.K.), the U.K. Met. Office, the Universities of Melbourne and Tasmania (Australia), the Tasmanian Partnership for Advanced Computing and the New Zealand National Institute for Water and Atmospheric Research (NIWA). 'weather@home' has also been supported by Microsoft Research.

  • Categories      

    Parks Australia - Our Marine Parks Grants Round 2 Project: Nearshore marine habitat mapping of the Norfolk Marine Park (Grant Activity ID: 4-FIZ391E) The Norfolk Marine Park is the is the eastern-most Park in the Temperate East Network of Australian Marine Parks, located between the NSW coast and Norfolk Island. The Park encompasses 188,444 km² of ocean and ranges in depth from 0 m at the Norfolk Island high tide mark to more than 5,00 m off the edge of the Norfolk Ridge. The Park includes two key ecological features – the Norfolk Ridge, and the Tasman Front and associated eddy field – both of which are valued for their high productivity, aggregations of marine life, biodiversity, and endemism. Norfolk Marine Park supports a range of species, including those listed as threatened under the Environment Protection and Biodiversity Conservation (EPBC) Act (1999), and contains Biologically Important Areas for breeding, foraging, and migration of seabirds, marine turtles, and humpback whales. The objective of this project was to create the first marine habitat map for the nearshore shallow water surrounding Norfolk, Nepean, and Phillip Islands. This was conducted in collaboration with Norfolk residents to provide local knowledge input and to ground-truth the remotely-sensed habitat mapping. This high-level habitat map will be used for planning purposes, development applications, and EPBC Act referrals within the nearshore waters of the Norfolk Marine Park, where no specific zoning for recreational and commercial activities currently exists. The map provides a basis for any ongoing citizen-science-driven marine habitat impact and condition assessments, ecosystem monitoring, and to provide the Norfolk Island residents with ownership of any future zoning planning. The map can be further refined as more detailed information becomes available from subject matter experts in the future.

  • Categories  

    Location of the Giant Kelp (Macrocystis pyrifera) outplant trial sites. This is part of a collaborative project between IMAS, The Nature Conservancy, CSIRO and NRM South to restore giant kelp forests in Tasmania.

  • Seabirds are long-range transporters of nutrients and contaminants, linking marine feeding areas with terrestrial breeding and roosting sites. By depositing nutrient-rich guano, which acts as a fertiliser, seabirds can substantially influence the terrestrial environment in which they reside. However, increasing pollution of the marine environment has resulted in guano becoming similarly polluted. Here, we determined metal and metalloid concentrations (As, Cd, Cr, Cu, Hg, Pb) in Flesh-footed Shearwater (Ardenna carneipes) guano, soil, terrestrial flora, and primary consumers and used an ecological approach to assess whether the trace elements in guano were bioaccumulating and contaminating the surrounding environment. Concentrations in guano were higher than those of other Procellariiformes documented in the literature, which may be influenced by the high amounts of plastics that this species of shearwater ingests. Soil samples from shearwater colonies had significantly higher concentrations of all metals, except for Pb, than soils from control sites and formerly occupied areas. Concentrations in terrestrial primary producers and primary consumers were not as marked, and for many contaminants there was no significant difference observed across levels of ornithogenic input. We conclude that Flesh-footed Shearwaters are transporters of marine derived contaminants to the Lord Howe Island terrestrial environment.

  • Categories    

    Phytoplankton indirectly influence climate through their role in the ocean biological carbon pump. In the Southern Ocean, the subantarctic zone represents an important carbon sink, yet variables limiting phytoplankton growth are not fully constrained. Using three shipboard bioassay experiments on three separate voyages, we evaluated the seasonality of iron (Fe) and manganese (Mn) co-limitation of subantarctic phytoplankton growth south of Tasmania, Australia. We observed a strong seasonal variation in a phytoplankton Fe limitation signal, with a summer experiment showing the greatest response to Fe additions. An autumn experiment suggested that other factors co-limited phytoplankton growth, likely low silicic acid concentrations. The phytoplankton responses to Mn additions were subtle and readily masked by the responses to Fe. Using flow cytometry, we observed that Mn may influence the growth of some small phytoplankton taxa in late summer/autumn, when they represent an important part of the phytoplankton community. In addition, Mn induced changes in the bulk photophysiology signal of the spring community. These results suggest that the importance of Mn may vary seasonally, and that its control on phytoplankton growth may be associated with specific taxa.

  • We compare the formulation and emergent dynamics of 11 CMIP6 IPCC marine biogeochemical models. We find that the largest source of uncertainty across model simulations of marine carbon cycling is grazing pressure (i.e. the phytoplankton specific loss rate to grazing). Variability in grazing pressure is driven by large differences in zooplankton specific grazing rates, which are not sufficiently compensated for by offsetting differences in zooplankton specific mortality rates. Models instead must tune the turnover rate of the phytoplankton population to balance large differences in top-down grazing pressure and constrain net primary production. We then run a controlled sensitivity experiment in a global, coupled ocean-biogeochemistry model to test the sensitivity of marine carbon cycling to this uncertainty and find that even when tuned to identical net primary production, export and secondary production remain extremely sensitive to grazing, likely biasing predictions of future climate states and food security.

  • This data presents the economic contribution of six key fisheries and aquaculture production sectors to the Tasmanian economy. These six fisheries and aquaculture sectors are: - Tasmanian Rock Lobster Fishery; - Tasmanian Abalone Fishery; - Tasmanian Scalefish Fishery; - Tasmanian Salmonid Aquaculture; - Tasmanian Pacific Oyster Aquaculture; and - Tasmanian Abalone Aquaculture. The economic contribution of these fisheries and aquaculture sectors are measured through the following indicators: - Gross Value Added (GVA) - Contribution to Household Income - Number of persons employed - Contribution to the total full-time equivalent (FTE) workforce The work was undertaken by the Institute for Marine and Antarctic Studies at the University of Tasmania in collaboration with BDO and builds on the foundations and approach set out in 2017/18 National Fisheries and Aquaculture Industry Contributions Study (FRDC 2017-210). To generate the values for the indicators listed above, the framework recommended in Australian Fisheries and Aquaculture Industry: Economic Contributions Estimates - Practitioner Guidelines 2019 (IMAS 2020) was applied. For the analysis in this report, the contribution of immediate processing or farm gate retail activity is not included. The estimates are based on the best available information at the time of writing and apply input-output modelling (developed by BDO) that uses the economic profiles and conversion to basic prices as provided by IMAS. The study was conducted to contribute to the measuring and monitoring of the contribution of Tasmania’s seafood production activities to the economic prosperity and wellbeing of Tasmanians. Understanding the economic contribution of the seafood processing sector is a significant area for further research in advancing our knowledge of the economy broadly associated with fishing and aquaculture in Tasmania.

  • Carbon and nitrogen isotope data for J. edwardsii lobsters from eight sites in SE Australia.

  • Diel partitioning of animals within ecological communities is widely acknowledged, yet rarely quantified. Investigation of most ecological patterns and processes involves convenient daylight sampling, with little consideration of the contributions of nocturnal taxa, particularly in marine environments. Here we assess diel partitioning of reef faunal assemblages at a continental scale utilizing paired day and night visual census across 54 shallow tropical and temperate reefs around Australia. Day/night differences were most pronounced in the tropics, with fishes and invertebrates displaying distinct and opposing diel occupancy on coral reefs. Tropical reefs in daytime were occupied primarily by fishes not observed at night (64% of all species sighted across day and night, and 71% of all individuals). By night, substantial emergence of invertebrates not otherwise detected during sunlit hours occurred (56% of all species, and 45% of individuals). Nocturnal emergence of tropical invertebrates corresponded with significant declines in the richness and biomass of predatory and herbivorous diurnal fishes. In contrast, relatively small diel changes in fishes active on temperate reefs corresponded to limited nocturnal emergence of temperate invertebrates. This reduced partitioning may, at least in part, be a result of strong top-down pressures from fishes on invertebrate communities, either by predation or competitive interference. For shallow reefs, the diel cycle triggers distinct emergence and retreat of faunal assemblages and associated trophic patterns and processes, which otherwise go unnoticed during hours of regular scientific monitoring. Improved understanding of reef ecology, and management of reef ecosystems, requires greater consideration of nocturnal interactions. Without explicit sampling of nocturnal patterns and processes, we may be missing up to half of the story when assessing ecological interactions.

  • The aim of this project was to estimate the iron recycling and export potential of Antarctic krill faecal pellets. To determine this, we firstly determined the sinking rate of the faecal pellets, characteristics which may influence the sinking rate (e.g., density, length and diameter), and then determined the portion of the total iron in the faecal pellets that is leached over a 12 h period under a continuous flow of seawater. The data sets that can be accessed here are: 1. Faecal pellet characteristics, including the raw and analysed data 2. The dry weight and length of faecal pellets used for total Fe estimation 3. Raw and final iron leachate data