Keyword

Southern Ocean

4 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 4 / 4
  • An increasing number of studies are considering Fe and ligand concentrations, providing data of trace element availability across the remote Southern Ocean region (Ardiningsih et al., 2021, Gerringa et al., 2020, Hassler et al., 2017, Thuroczy et al., 2012, Thuroczy et al., 2011, Caprara et al., 2016 and references therein). However, studies seldom focus on polar coastal environments which are especially sensitive to climate-induced changes. To anticipate how these changes may impact Fe availability, we must first understand the drivers of ligand supply to the Antarctic coast and offshore. The newly compiled Southern Ocean Ligand (SOLt) Collection includes all publicly available Fe complexation datasets for the Southern Ocean including dissolved Fe concentrations, Fe-binding ligand concentrations, and complexation capacities for 25 studies between 1995 - 2019.

  • Antarctic krill (Euphausia superba) are a keystone species in the Southern Ocean, but little is known about how they will respond to climate change. Ocean acidification, caused by sequestration of carbon dioxide into ocean surface waters (pCO2), is known to alter the lipid biochemistry of some organisms. This can have cascading effects up the food chain. In a year-long laboratory experiment adult krill were exposed to ambient seawater pCO2 levels (400 μatm), elevated pCO2 levels that mimicked near-future ocean acidification (1000, 1500 and 2000 μatm) and an extreme pCO2 level (4000 μatm). The laboratory light regime mimicked the seasonal Southern Ocean photoperiod and krill received a constant food supply. Total lipid mass (mg g -1 DM) of adult krill was unaffected by near-future levels of seawater pCO2. Fatty acid composition (%) and fatty acid ratios associated with immune responses and cell membrane fluidity were also unaffected by near-future pCO2, apart from an increase in 18:3n-3/18:2n-6 ratios in krill in 1500 μatm pCO2 in winter and spring. Extreme pCO2 had no effect on krill lipid biochemistry during summer. During winter and spring, krill in extreme pCO2 had elevated levels of omega-6 fatty acids (up to 1.2% increase in 18:2n-6, up to 0.8% increase in 20:4n-6 and lower 18:3n-3/18:2n-6 and 20:5n-3/20:4n-6 ratios), and showed evidence of increased membrane fluidity (up to three-fold increase in phospholipid/sterol ratios). These results indicate that the lipid biochemistry of adult krill is robust to near-future ocean acidification.

  • Categories    

    This dataset is a compilation of published records of 230Thorium - normalised lithogenic and biogenic fluxes from the Southern Ocean, south of 30S. All age models and derived fluxes were taken as published. Lithogenic fluxes are based on 232Th concentrations. Opal and carbonate fluxes are also included where available. In some cases fluxes had to be derived from published data. LGM values for each core represent an average of observations between 28 - 18 ka BP and Holocene values represent an average of observations from 10 - 0 ka BP. These data were collated as part of modelling study of the Southern Ocean during the LGM (Saini et al, Southern Ocean ecosystem response to Last Glacial Maximum boundary conditions, Submitted to Paleoceanography and Paleoclimatology, 2021)

  • Categories    

    Antarctic krill is a key component of Southern Ocean ecosystems and there is significant interest in identifying regions acting as sources for the krill population. We develop a mechanistic model combining thermal and food requirements for krill egg production, with predation pressure post-spawning, to predict regions that could support high larval production (spawning habitat). We optimise our model on regional data using a maximum likelihood approach and then generate circumpolar predictions of spawning habitat quality. The uploaded datasets represent model predictions of seasonal circumpolar spawning habitat quality of Antarctic krill as well as composite data of the circumpolar mean annual number of weeks in which modelled spawning habitat quality is higher than the summer 80th percentile.