From 1 - 6 / 6
  • An increasing number of studies are considering Fe and ligand concentrations, providing data of trace element availability across the remote Southern Ocean region (Ardiningsih et al., 2021, Gerringa et al., 2020, Hassler et al., 2017, Thuroczy et al., 2012, Thuroczy et al., 2011, Caprara et al., 2016 and references therein). However, studies seldom focus on polar coastal environments which are especially sensitive to climate-induced changes. To anticipate how these changes may impact Fe availability, we must first understand the drivers of ligand supply to the Antarctic coast and offshore. The newly compiled Southern Ocean Ligand (SOLt) Collection includes all publicly available Fe complexation datasets for the Southern Ocean including dissolved Fe concentrations, Fe-binding ligand concentrations, and complexation capacities for 25 studies between 1995 - 2019.

  • Antarctic krill (Euphausia superba) are a keystone species in the Southern Ocean, but little is known about how they will respond to climate change. Ocean acidification, caused by sequestration of carbon dioxide into ocean surface waters (pCO2), is known to alter the lipid biochemistry of some organisms. This can have cascading effects up the food chain. In a year-long laboratory experiment adult krill were exposed to ambient seawater pCO2 levels (400 μatm), elevated pCO2 levels that mimicked near-future ocean acidification (1000, 1500 and 2000 μatm) and an extreme pCO2 level (4000 μatm). The laboratory light regime mimicked the seasonal Southern Ocean photoperiod and krill received a constant food supply. Total lipid mass (mg g -1 DM) of adult krill was unaffected by near-future levels of seawater pCO2. Fatty acid composition (%) and fatty acid ratios associated with immune responses and cell membrane fluidity were also unaffected by near-future pCO2, apart from an increase in 18:3n-3/18:2n-6 ratios in krill in 1500 μatm pCO2 in winter and spring. Extreme pCO2 had no effect on krill lipid biochemistry during summer. During winter and spring, krill in extreme pCO2 had elevated levels of omega-6 fatty acids (up to 1.2% increase in 18:2n-6, up to 0.8% increase in 20:4n-6 and lower 18:3n-3/18:2n-6 and 20:5n-3/20:4n-6 ratios), and showed evidence of increased membrane fluidity (up to three-fold increase in phospholipid/sterol ratios). These results indicate that the lipid biochemistry of adult krill is robust to near-future ocean acidification.

  • Categories    

    This dataset is a compilation of published records of 230Thorium - normalised lithogenic and biogenic fluxes from the Southern Ocean, south of 30S. All age models and derived fluxes were taken as published. Lithogenic fluxes are based on 232Th concentrations. Opal and carbonate fluxes are also included where available. In some cases fluxes had to be derived from published data. LGM values for each core represent an average of observations between 28 - 18 ka BP and Holocene values represent an average of observations from 10 - 0 ka BP. These data were collated as part of modelling study of the Southern Ocean during the LGM (Saini et al, Southern Ocean ecosystem response to Last Glacial Maximum boundary conditions, Submitted to Paleoceanography and Paleoclimatology, 2021)

  • Categories    

    Robust prediction of population responses to changing environments requires the integration of factors controlling population dynamics with processes affecting distribution. This is true everywhere but especially in polar pelagic environments. Biological cycles for many polar species are synchronised to extreme seasonality, while their distributions may be influenced by both the prevailing oceanic circulation and sea-ice distribution. Antarctic krill (krill, Euphausia superba) is one such species exhibiting a complex life history that is finely tuned to the extreme seasonality of the Southern Ocean. Dependencies on the timing of optimal seasonal conditions has led to concerns over the effects of future climate on krill’s population status, particularly given the species’ important role within Southern Ocean ecosystems. Under a changing climate, established correlations between environment and species may breakdown. Developing the capacity for predicting krill responses to climate change therefore requires methods that can explicitly consider the interplay between life history, biological conditions, and transport. The Spatial Ecosystem And Population Dynamics Model (SEAPODYM) is one such framework that integrates population and general circulation modelling to simulate the spatial dynamics of key organisms. Here, we describe a modification to SEAPODYM, creating a novel model – KRILLPODYM – that generates spatially resolved estimates of krill biomass and demographics. This new model consists of three major components: (1) an age-structured population consisting of five key life stages, each with multiple age classes, which undergo age-dependent growth and mortality, (2) six key habitats that mediate the production of larvae and life stage survival, and (3) spatial dynamics driven by both the underlying circulation of ocean currents and advection of sea-ice. Here we present the first results of KRILLPODYM, using published deterministic functions of population processes and habitat suitability rules. Initialising from a non-informative uniform density across the Southern Ocean our model independently develops a circumpolar population distribution of krill that approximates observations. The model framework lends itself to applied experiments aimed at resolving key population parameters, life-stage specific habitat requirements, and dominant transport regimes, ultimately informing sustainable fishery management. ____ This dataset represents KRILLPODYM modelled estimates of Antarctic krill circumpolar biomass distribution for the final year of a 12-year spin up. Biomass distributions are given for each of the five key life stages outlined above. The accompanying background, model framework and initialisation description can be found in the following reference paper: Green, D. B., Titaud, O., Bestley, S., Corney, S. P., Hindell, M. A., Trebilco, R., Conchon, A. and Lehodey, P. in review. KRILLPODYM: a mechanistic, spatially resolved model of Antarctic krill distribution and abundance. - Frontiers in Marine Science

  • Categories    

    Antarctic krill is a key component of Southern Ocean ecosystems and there is significant interest in identifying regions acting as sources for the krill population. We develop a mechanistic model combining thermal and food requirements for krill egg production, with predation pressure post-spawning, to predict regions that could support high larval production (spawning habitat). We optimise our model on regional data using a maximum likelihood approach and then generate circumpolar predictions of spawning habitat quality. The uploaded datasets represent model predictions of seasonal circumpolar spawning habitat quality of Antarctic krill as well as composite data of the circumpolar mean annual number of weeks in which modelled spawning habitat quality is higher than the summer 80th percentile.

  • This record presents genetic data underlying the paper 'From the Surface Ocean to the Seafloor: Linking Modern and Paleo-genetics at the Sabrina Coast, East Antarctica (IN2017_V01)' by Armbrecht et al. In this study, we provide the first taxonomic overview of the modern and ancient marine bacterial and eukaryotic communities of the Totten Glacier region, East Antarctica, using a combination of 16S and 18S rRNA amplicon sequencing (modern DNA) and shotgun metagenomic (sedimentary ancient DNA, sedaDNA) analyses, respectively. We explore environmental and geochemical variables that drive these biodiversity patterns. Our data show considerable differences between eukaryote and bacterial signals detected via DNA analyses in the water column vs. the sediments. Organisms that are well represented in deeper waters appear are to have a higher likelihood of becoming preserved in the sediments. The study provides the first assessment of DNA transfer from ocean waters to sediments, while also providing a broad overview of the biological communities occurring in the climatically important Totten Glacier region. (Please note that this record is mirrored in the UTAS Research Data Portal, here: https://rdp.utas.edu.au/metadata/8628529b-49cf-42d4-9459-3c1e97f70d98)