KELP FOREST
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
Predictions of dominant habitats were completed as part of a report funded by the NESP Marine & Coastal Hub. This report focussed on an IUCN II zone in the South-west Corner Marine Park off the 'Capes region' near Margaret River. This modelling contains data from stereo Baited Remote Underwater Video and panoramic drop camera, and was completed using the FSS-GAM package in R. Predictions are at two different scales and resolutions, one using the broad 250m resolution Geoscience Australia bathymetry and the other using a 4m resolution multibeam survey from Geoscience Australia
-
Benthic habitat annotations of stereo Baited Remote Underwater Video (Stereo-BRUV) and panoramic drop camera imagery, were completed as part of a report funded by the NESP Marine & Coastal Hub. This report focussed on an IUCN II zone in the South-west Corner Marine Park off the 'Capes region' near Margaret River. These data were analysed in TransectMeasure using a modified version of the CATAMI scheme.
-
Fish annotations of stereo Baited Remote Underwater Video and panoramic drop camera imagery, were completed as part of a report funded by the NESP Marine & Coastal Hub. This report focussed on an IUCN II zone in the South-west Corner Marine Park off the 'Capes region' near Margaret River. These data were analysed in EventMeasure using standard operating procedures for the annotation of remote stereo imagery.
-
The National Reef Monitoring Network brings together shallow reef surveys conducted around Australia into a centralised database. The IMOS National Reef Monitoring Network sub-Facility collates, cleans, stores and makes this data rapidly available from contributors including: Reef Life Survey, Parks Australia, Department of Biodiversity, Conservation and Attractions (Western Australia), Department of Environment, Water and Natural Resources (South Australia), Department of Primary Industries (New South Wales), Tasmanian Parks and Wildlife Service and Parks Victoria. The data provided by the National Reef Monitoring Network contributes to establishing and supporting national marine baselines, and assisting with the management of Commonwealth and State marine reserves. Reef Life Survey (RLS) and the Australian Temperate Reef Network (ATRC) aims to improve biodiversity conservation and the sustainable management of marine resources by coordinating surveys of rocky and coral reefs using scientific methods, with the ultimate goal to improve coastal stewardship. Our activities depend on the skills of marine scientists, experienced and motivated recreational SCUBA divers, partnerships with management agencies and university researchers, and active input from the ATRC partners and RLS Advisory Committee. RLS and ATRC data are freely available to the public for non-profit purposes, so not only managers, but also groups such as local dive clubs or schools may use these data to look at changes over time in their own local reefs. By making data freely available and through public outputs, RLS and ATRC aims to raise broader community awareness of the status of Australia’s marine biodiversity and associated conservation issues.
-
Ecosystems provide numerous services and benefits to society. While historically overlooked, these services are increasingly recognized and are now being mapped and accounted for. There are several approaches to mapping and evaluating these ecosystem services. In this report, we use two increasingly common approaches, Ocean Accounting and Welfare Economics, to evaluate ecosystem services for the Great Southern Reef. The Great Southern Reef is a network of rocky reefs dominated by temperate algal forests known as kelp. It spans over 8,000 Km of coastline and supports two thirds of the Australian population. Despite its presumed importance, there has been little work quantifying the extent and value of the ecosystem services provided by the Great Southern Reef. Through a systematic review we assessed the current state of knowledge of the ecosystem services provided by the Great Southern Reef. Using the Common International Classification of Ecosystem Services (CICES) framework, we created an overview of the ecosystem services (provisioning, regulating, and cultural) provided by the Great Southern Reef in New South Wales, Victoria, Tasmania, South Australia, and Western Australia. We then created metrics to quantify how these services benefit coastal societies in these five states. Highlight summaries include over 17 million Australians who live within 50 Km of the reef, 26 wild seaweed harvest companies, 115 tourism SCUBA operators, 1436 mapped dive sites, 18 million tourist visits each year, 16 temperate marine biology university programs, 43 books and films, key medical products, 23 tons of harvested seaweed, 1116 grams of carbon per m2 used for growth each year, 2,361 peer-reviewed scientific publications from 1976 to 2022, 186 marine protected areas, 2.16 million recreational fishers, and over 28 commercial fisheries with 20,000 tons of biomass taken each year. We then conducted economic evaluations using these biophysical values and the available information. Using a variety of approaches, we found that the total economic value of the Great Southern Reef was $11.56 billion each year. Individually the values were as follows, commercial fishing (producer surplus - $33.2 million), carbon sequestration (avoided damages - $37.8 million), nutrient cycling (avoided damages - $6,484 million), recreational fishing (consumer surplus - $1,668 million), diving and snorkelling (consumer surplus - $403 million), other recreational activities (consumer surplus $1,836 million), and the existence value (consumer surplus - $1,096 million).
-
This record provides an overview of the NESP Marine and Coastal Hub bridging study - "Future-proofing restoration & thermal physiology of kelp". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Kelp forests create complex habitats that support a diverse and productive community of marine life. They underpin coastal food-webs, fisheries, and a suite of other ecosystem services including nutrient and blue carbon cycling. Across much of the world, kelp forests are in decline and under threat from stressors including urbanisation, overgrazing, ocean warming, and marine heatwaves driven by climate change. Australia’s giant kelp (Macrocystis pyrifera) forests are listed as a Threatened Ecological Community under the Environment Protection and Biodiversity Conservation Act 1999. Habitat restoration is a potential tool for the conservation and management of giant kelp ecosystems. Given the direct impacts of climate change and ocean warming, there is growing recognition of the need for habitat restoration to be ‘future proofed’. For restoration to be effective, the cause of habitat decline must be understood and overcome. This is problematic when climate change is driving habitat loss since it cannot be reversed or ameliorated prior to restoration. A previous NESP project led by this team (Project E7, Marine Biodiversity Hub) identified warm-tolerant strains of giant kelp from remnant patches in eastern Tasmania, where the species has experienced precipitous declines due to ocean-warming. These strains have high potential to assist with ‘future-proofing’ kelp forest restoration, however it is still unclear what the physiological mechanisms are that provide their improved thermal tolerance. It is also unknown whether cross-breeding the identified warm-tolerant giant kelp strains will affect and potentially improve their thermal tolerance capacity. This project explored the physiology of kelp thermal performance, specifically the mechanisms potentially responsible for the warm water tolerance identified in particular giant kelp strains. It confirmed the improved ability of the warm-tolerant strains to develop at stressful warm temperatures relative to normal giant kelp, and demonstrated for the first time that their improved thermal performance may extend to the development and fertilisation. The outcomes progress toward the identification of populations of Australian kelp that may be resilient to (or especially threatened by) ocean warming and climate change. Outputs • Ecophysiological measurements from laboratory experiments of warm-tolerant vs average giant kelp genotypes [dataset] • Final Project Report including a short summary of recommendations for policy makers of key findings [written]
-
This record described kelp growth and ecophysiological data relevant to the thermal tolerance of specific warm-tolerant and 'normal' family-lines of giant kelp (Macrocystis pyrifera) from Tasmania, Australia. Australia’s giant kelp forests are listed as a Threatened Ecological Community under the Environment Protection and Biodiversity Conservation Act 1999. Habitat restoration is a potential tool for the conservation and management of giant kelp ecosystems. For habitat restoration to be effective, the cause of habitat decline must be understood and overcome. This is problematic when climate change is driving habitat loss since it cannot be reversed or ameliorated prior to restoration. A previous NESP project led by this team (Project E7, Marine Biodiversity Hub) identified warm-tolerant strains of giant kelp from remnant patches in eastern Tasmania, where the species has experienced precipitous declines due to ocean-warming. These strains have high potential to assist with ‘future-proofing’ kelp forest restoration, however it is still unclear what the physiological mechanisms are that provide their improved thermal tolerance. This work cultivated the warm-tolerant strains of giant kelp previously identified, along with giant kelp strains of normal tolerance, at both cool (16 °C) and warm temperatures (20 °C). The juvenile kelp was then harvested, and a suite of physiological traits that may be responsible for their differences in thermal tolerance were examined. These included nutrient usage (carbon and nitrogen content), cellular membrane processes (fatty acid contents), and photosynthesis (PAM fluorometry and photosynthetic pigments). The cultivation trials again illustrated the improved ability of the warm-tolerant strains to develop at stressful warm temperatures relative to normal giant kelp. This work demonstrated for their first time that the improved thermal performance of these strains may extend to the development and fertilisation of the earlier kelp ‘gametophyte’ life-stage. Despite the clear differences in growth between the two test groups, the physiological assessments illustrated a complex pattern of responses, some of which are contrary to expected based on prior knowledge of thermal performance in kelps. Nonetheless, these results indicate that the warm-tolerant strains of giant kelp have a greater capacity to alter the composition of their fatty acids and may be more efficient users of nitrogen (a key nutrient for growth and development). This new information will help inform ongoing kelp breeding and selection programs for future-proofing kelp restoration in Australia and globally. The improved understanding of the physiology of kelp thermal tolerance might also help with identifying individuals and populations of Macrocystis, and other kelps, that may be resilient to (or especially threatened by) ocean warming and climate change.
-
This record describes the outputs of two different modelling exercises that were used to characterise the seafloor habitats for temperate Australian waters. The modelled area includes all shelf waters (<250m depth) in southern Australia south of the Tropic of Capricorn. Bioregional benthic habitat maps were constructed using (1) the Geoscience Australia 250m 2023 grid (ref); (2) ground-truthing observations derived from horizontally facing imagery from stereo-BRUV and BOSS camera systems; and (3) several physical datasets as covariates in model development (all oceanographic variables smoothed to 250m resolution). Source data is available from Geoscience Australia's eCat: https://doi.org/10.26186/148758 (bathymetry), Squidle+: (benthic imagery annotations), and (3) AODN Portal: https://portal.aodn.org.au/search (IMOS oceanographic datasets). The specific subset of GA observations used in this modelling exercise is available from https://github.com/UWA-Marine-Ecology-Group-projects/nesp-2.1/blob/main/data/tidy/NESP-2.1_broad-habitat.csv. See the NESP Mac Project 2.1 final report for a description of the sampling design for ground-truthing observations and annotation technique. -----Functional Reef model (binomial)----- This model discriminates ‘functional reef’ from sediment (non-reef) ecosystem types. Functional reef is defined by this project as “any seabed area functioning as a reef, which may include dense beds of sessile invertebrates or molluscs”. This term was chosen because much of the continental shelf is dominated by sediment yet is stable enough to support emergent sessile biota that provide structure and resources for “reef-affiliated” species. The modelling approach uses a Bayesian representation of a Binomial generalised linear model. For ground-truthing benthic annotations, the following benthic categories were collapsed into the ‘functional reef’ classification: sessile invertebrates, bare rocky reef (consolidated), macroalgae, Amphibolis spp. and Thalassodendron spp. All other benthic classifications were assigned to the ‘non-reef’ category. -----Ecosystem Component model (multinomial)----- This model discriminates between five broad habitat types (hereafter ‘ecosystem components’): seagrass, macroalgae, sessile invertebrates, bare consolidated substrata, bare unconsolidated substrata. The modelling approach uses a Bayesian implementation of a Multinomial generalised linear model. For ground-truthing benthic annotations, benthic annotations for mobile species (e.g. echinodermata) were discarded. All remaining annotations were collapsed into the five broad ecosystem components. A selection of mapping (WMS) services are listed in the 'Downloads & Links' section of this record. See the 'Lineage' section for a full description of the data packages available for download, and for more visualisation options.
-
The National Reef Monitoring Network brings together shallow reef surveys conducted around Australia into a centralised database. The IMOS National Reef Monitoring Network sub-Facility collates, cleans, stores and makes this data rapidly available from contributors including: Reef Life Survey, Parks Australia, Department of Biodiversity, Conservation and Attractions (Western Australia), Department of Environment, Water and Natural Resources (South Australia), Department of Primary Industries (New South Wales), Tasmanian Parks and Wildlife Service and Parks Victoria. The data provided by the National Reef Monitoring Network contributes to establishing and supporting national marine baselines, and assisting with the management of Commonwealth and State marine reserves. Reef Life Survey (RLS) and the Australian Temperate Reef Network (ATRC) aims to improve biodiversity conservation and the sustainable management of marine resources by coordinating surveys of rocky and coral reefs using scientific methods, with the ultimate goal to improve coastal stewardship. Our activities depend on the skills of marine scientists, experienced and motivated recreational SCUBA divers, partnerships with management agencies and university researchers, and active input from the ATRC partners and RLS Advisory Committee. RLS and ATRC data are freely available to the public for non-profit purposes, so not only managers, but also groups such as local dive clubs or schools may use these data to look at changes over time in their own local reefs. By making data freely available and through public outputs, RLS and ATRC aims to raise broader community awareness of the status of Australia?s marine biodiversity and associated conservation issues. This dataset contains records of mobile macroinvertebrates collected by Reef Life Survey (RLS) and Australian Temperate Reef Collaboration (ATRC) divers and partners along 50m transects on shallow rocky and coral reefs using standard methods. Abundance information is available for all species recorded within quantitative survey limits (50 x 1 m swathes either side of the transect line, each distinguished as a 'Block'), with divers searching the reef surface (including cracks) carefully for hidden invertebrates such as sea stars, urchins, gastropods, lobsters, crabs etc. These observations are recorded concurrently with the cryptobenthic fish observations and together make up the 'Method 2' component of the surveys. For this method, typically one 'Block' is completed per 50 m transect for the program ATRC and 2 blocks are completed for RLS ? although exceptions to this rule exist. This dataset supersedes the RLS specific "Reef Life Survey (RLS): Invertebrates" collection that was available at https://catalogue-rls.imas.utas.edu.au/geonetwork/srv/en/metadata.show?uuid=60978150-1641-11dd-a326-00188b4c0af8 (provision of data was stopped in June 2021).
-
The National Reef Monitoring Network brings together shallow reef surveys conducted around Australia into a centralised database. The IMOS National Reef Monitoring Network sub-Facility collates, cleans, stores and makes this data rapidly available from contributors including: Reef Life Survey, Parks Australia, Department of Biodiversity, Conservation and Attractions (Western Australia), Department of Environment, Water and Natural Resources (South Australia), Department of Primary Industries (New South Wales), Tasmanian Parks and Wildlife Service and Parks Victoria. The data provided by the National Reef Monitoring Network contributes to establishing and supporting national marine baselines, and assisting with the management of Commonwealth and State marine reserves. Reef Life Survey (RLS) and the Australian Temperate Reef Network (ATRC) aims to improve biodiversity conservation and the sustainable management of marine resources by coordinating surveys of rocky and coral reefs using scientific methods, with the ultimate goal to improve coastal stewardship. Our activities depend on the skills of marine scientists, experienced and motivated recreational SCUBA divers, partnerships with management agencies and university researchers, and active input from the ATRC partners and RLS Advisory Committee. RLS and ATRC data are freely available to the public for non-profit purposes, so not only managers, but also groups such as local dive clubs or schools may use these data to look at changes over time in their own local reefs. By making data freely available and through public outputs, RLS and ATRC aims to raise broader community awareness of the status of Australia?s marine biodiversity and associated conservation issues. This dataset provides the metadata associated with individual 50 m transects surveyed by Reef Life Survey (RLS) and Australian Reef Collaboration Network (ATRC) divers and partners. All surveys in this list were undertaken using standard methods. ATRC surveys are predominantly collected as a group of 4 x 50m transects per site, RLS surveys commonly have a minimum of 2 x 50 m surveys per site on any given date (typically at different depths), but this number often varies. This dataset supersedes the RLS specific "Reef Life Survey (RLS): Survey Locations " collection that was available at https://catalogue-rls.imas.utas.edu.au/geonetwork/srv/en/metadata.show?uuid=4972fa20-195b-41e4-bee8-8175d6ac792b (provision of data was stopped in June 2021).