Contact for the resource

IMAS Data Manager

33 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 33
  • Categories    

    At the inception of our project, no study had examined particle fluxes in the Subantarctic Zone (SAZ) of the Southern Ocean, despite the fact that the SAZ represents a large portion of the total area of the Southern Ocean, serve as a strong sink for atmospheric (~1G t C yr-1 [Metzl et al., 1999]), and is central to hypotheses linking particle fluxes and climate change [Francois et al., 1997; Kumar et al., 1995; Sigman et al., 1999]. The SAZ serves as an interface between the cold nutrient-rich waters to its south and the nutrient-depleted subtropical gyres to its north. SAZ upper layers are marked by a thick layer of relatively homogenous Subantarctic Mode Water (SAMW), which overlies Antarctic Intermediate Water (AAIW). Both water masses are subducted northward beneath the subtropical gyres. Thus particles leaving the surface in these regions contribute to carbon redistribution via both the fraction that reaches the deep sea by settling and the fraction that is remineralized within SAMW or AAIW and subsequently subducted. The SAZ exhibits surface water carbon dioxide partial pressures well below atmospheric equilibrium, but PFZ waters are closer to atmospheric equilibrium in this sector [Metal et al., 1999; Poppet al., 1999]. The relative physical and biological contributions to these carbon dioxide partial pressure variations are unclear, but it is important to determine them because physical and biological carbon dioxide transfers are expected to show different responses to climate change [ Matear et al., 1999; Sarmiento and LeQuere, 1996]. For these reasons we focused on the SAZ and, for comparative purposes, on the PFZ to its south. We measured particle fluxes using moored sinking particle traps at three sites in the SAZ, in the PFZ, and beneath the Subantarctic Front (SAF), which separates them. This record describes particle flux data collected between 2004 and 2005. The NetCDF data contains the following variables. Please note not all variables are supplied in all files, specifically there are not uncertainty estimates and no quality control flags for this data. -----DATA DICTIONARY----- Name, description, units, standard name TIME, time, YYYY-MM-DD, time of sample midpoint TIME_START, time sample open, YYYY-MM-DD, time sample open NOMINAL_DEPTH, depth, m, nominal depth LATITUDE, latitude, degrees_north, latitude of anchor LONGITUDE, longitude, degrees_east, longitude of anchor pressure_actual, actual, dbar, actual pressure sample, sample number, 1, sample number sample_quality_control, quality flag for sample number, unitless, quality flag for sample number mass_flux, <1mm, mg m-2 d-1, particulate total mass flux mass_flux_uncertainty, uncertainty for particulate total mass flux, mg m-2 d-1,), uncertainty for particulate total mass flux mass_flux_quality_control, quality flag for particulate total mass flux, unitless, quality flag for particulate total mass flux SAL_BRINE, supernatant, 1, sample supernatant practical salinity SAL_BRINE_uncertainty, uncertainty for sample supernatant practical salinity, 1, uncertainty for sample supernatant practical salinity SAL_BRINE_quality_control, quality flag for sample supernatant practical salinity, unitless, quality flag for sample supernatant practical salinity pH_BRINE, supernatant, 1, sample supernatant pH NBS scale pH_BRINE_uncertainty, uncertainty for sample supernatant pH NBS scale, 1, uncertainty for sample supernatant pH NBS scale pH_BRINE_quality_control, quality flag for sample supernatant pH NBS scale, unitless, quality flag for sample supernatant pH NBS scale PC_mass_flux, <1mm, mg m-2 d-1, particulate total carbon mass flux PC_mass_flux_uncertainty, uncertainty for particulate total carbon mass flux, mg m-2 d-1, uncertainty for particulate total carbon mass flux PC_mass_flux_quality_control, quality flag for particulate total carbon mass flux, unitless, quality flag for particulate total carbon mass flux PN_mass_flux, <1mm, mg m-2 d-1, particulate total nitrogen mass flux PN_mass_flux_uncertainty, uncertainty for particulate total nitrogen mass flux, mg m-2 d-1, uncertainty for particulate total nitrogen mass flux PN_mass_flux_quality_control, quality flag for particulate total nitrogen mass flux, unitless, quality flag for particulate total nitrogen mass flux POC_mass_flux, <1mm, mg m-2 d-1, particulate organic carbon mass flux POC_mass_flux_uncertainty, uncertainty for particulate organic carbon mass flux, mg m-2 d-1, uncertainty for particulate organic carbon mass flux POC_mass_flux_quality_control, quality flag for particulate organic carbon mass flux, unitless, quality flag for particulate organic carbon mass flux PIC_mass_flux, <1mm, mg m-2 d-1, particulate inorganic carbon mass flux PIC_mass_flux_uncertainty, uncertainty for particulate inorganic carbon mass flux, mg m-2 d-1, uncertainty for particulate inorganic carbon mass flux PIC_mass_flux_quality_control, quality flag for particulate inorganic carbon mass flux, unitless, quality flag for particulate inorganic carbon mass flux BSi_mass_flux, <1mm, mg m-2 d-1, particulate biogenic silicon mass flux BSi_mass_flux_uncertainty, uncertainty for particulate biogenic silicon mass flux, mg m-2 d-1, uncertainty for particulate biogenic silicon mass flux BSi_mass_flux_quality_control, quality flag for particulate biogenic silicon mass flux, unitless, quality flag for particulate biogenic silicon mass flux TIME_END, time sample closed, YYYY-MM-DD, time sample closed Reference, citable reference DOI, DOI

  • This submission creates a static snapshot of data from the Autonomous Underwater Vehicle (AUV) and stereo-BRUV annotation data from the National Environmental Science Program (NESP) Elizabeth and Middleton Reef survey. More details on the survey can be found at https://www.nespmarine.edu.au/document/elizabeth-and-middleton-reefs-lord-howe-marine-park-post-survey-report.

  • This is a collection of data in East Antarctica from Southern Elephant seal's between 2004 and 2009. The monthly data set has been further classified by polynya and year. Additionally, we provide a dataset of the polynyas contours defined following a criteria of 75% of sea-ice concentration for each individual month between 2004 and 2019. Data are provided in .mat format

  • These files contain the data recorded from a mesocosm experiment conducted in Bergen, Norway 2022 which assessed the effect of simualted mineral-based (silicate or calcium) ocean alkalinity enhancement (OAE) on diatom silicification. Ten mesocosms were used in total, divided into two groups either the silicate- or calcium based group and alkalinity was increased by either 0, 150, 300, 450 or 600 µmol L-1 above natrually occuring levels. The PDMPO-fluorescence (an appropriate proxy for silicification) of diatoms was recorded on eight seperate days during the experiment. Accompanying data includes measured; macronutrients (nitrate, nitrite, phophate, silicate), total alkalinity, biogenic silica in the water column and sediment trap.

  • Southeastern Australia's marine waters are undergoing a trend of increased warming, surpassing the global average. This area has emerged as an alluring location for research on planktic microfossils, particularly dinoflagellate cysts, which are abundant in contemporary and Late Quaternary sediments. The composition of dinoflagellate cyst assemblages offers valuable information about the physical and biogeochemical properties of mid-latitude waters in this region. This study presents an analysis of cyst assemblages from marine sediment cores from waters inshore and offshore Maria Island, Tasmania, southeast Australia, up to 9 kyrs BP. The dominant cysts were Protoceratium reticulatum, Protoperidinium spp. (P. avellana, P. conicum, P.minutum, P. oblongum, P. subinerme, P. shanghaiense) and Spiniferites spp. (S. bulloideus, S. hyperacanthus, S. membranaceus, S. mirabilis, S. pachydermus, and S. ramosus). Inshore, Spiniferites spp. were more abundant (up to 61%), while P. reticulatum was dominant (up to 80%) at the offshore site. Impagidinium spp. and Nematosphaeropsis labyrinthus were exclusively detected offshore, with their increasing occurrence from 6 kyrs BP to present suggesting a transition from shallow coastal to stable deep-water habitat. Cysts of the Alexandrium tamarense complex were detected over the past 140 years and 9 kyrs BP at the inshore and offshore sites respectively, indicating an endemic long-term presence. Low abundances of Gymnodinium catenatum cysts were detected exclusively inshore from 50 years ago to present, suggesting recent bloom events. The limited southward penetration of the East Australian Current is indicated by the lack of warm-water cyst taxa such as Lingulodinium machaerophorum. Unlike coccolithophores, previously studied in the same sediment core, no discernible shift from cold to warm-water dinoflagellate cyst species was observed. The documentation of dinoflagellate cyst assemblages presented in this study will aid in predicting the effects of climate change, eutrophication, and introduction of novel species on local and broader community dynamics.

  • Data to accompany publication on wild diet of southern rock lobster on the east coast of Tasmania. In this study we collected 64 lobsters and analysed the diet of each individual using stomach contents, stable isotope analysis and DNA identification of prey species in faecal samples.

  • Categories  

    Location of the new proposed Indigenous Protected Area (IPA) Tayaritja Milaythina Muka, the Sea Country around the Bass Strait Islands. The data was provided by the Tasmanian Aboriginal Centre and hosted by the Tasmania's Marine Atlas. The Tayaritja Milaythina Muka IPA project commenced in 2022 and involves the preparation of a management plan for the proposed IPA and has supported the establishment of the Pakana Sea Country Rangers and the purchase of assets to support Sea Country management. Later this year the management plan for the proposed Tayaritja Milaythina Muka IPA will be released for consideration by all relevant parties.

  • Categories  

    Locations of the Oysters Tasmania's Sensor Network. The sensor network provides real-time data on salinity, water temperature, and depth in shellfish growing areas in Tasmania. Oyster growers can access the sensor data via the ‘ShellPOINT’ portal (https://www.oysterstasmania.org/shellpoint.html).

  • Categories  

    This dataset depicts the location of the Broadscale Environmental Monitoring Program (BEMP) sites. It was compiled from data provided by EPA Tasmania, IMAS and published reports. BEMP was initiated in 2009 by the State Government to provide knowledge and information on ecosystem function in the D’Entrecasteaux Channel and Huon Estuary. BEMPs have been developed for all marine farming regions. The objective of each program is to document (on an ongoing basis) broadscale spatial and temporal trends for key environmental parameters, allowing assessment of the environmental effects of finfish aquaculture in Tasmania. Marine farming licence conditions include participation in respective BEMPs. The BEMP program initially covered assessment of water column and sediment health at a broadscale level but has been expanded to include inshore reef, deep-reef and seagrass distribution and health. Seagrass monitoring occurs over transects. In this dataset, only the start location is displayed. Sediment sampling includes benthic infauna, stable isotopes, particle size, visual assessment, redox analysis, and sulphide measurements. Visual assessment, redox and sulphide analysis is carried out each year, while analysis of benthic infauna, stable isotopes and particle size is undertaken every four years. In the intervening years these samples are collected, preserved and retained. Water quality analytes include physico-chemical parameters (temperature, dissolved oxygen and salinity), nutrients (dissolved nutrients: ammonia, nitrate, phosphate, and silicate, nutrients: total nitrogen, total phosphorous), chlorophyll a and phytoplankton species counts. Water quality sampling is undertaken monthly from May to January and fortnightly from February to April.

  • Categories    

    Phytoplankton indirectly influence climate through their role in the ocean biological carbon pump. In the Southern Ocean, the subantarctic zone represents an important carbon sink, yet variables limiting phytoplankton growth are not fully constrained. Using three shipboard bioassay experiments on three separate voyages, we evaluated the seasonality of iron (Fe) and manganese (Mn) co-limitation of subantarctic phytoplankton growth south of Tasmania, Australia. We observed a strong seasonal variation in a phytoplankton Fe limitation signal, with a summer experiment showing the greatest response to Fe additions. An autumn experiment suggested that other factors co-limited phytoplankton growth, likely low silicic acid concentrations. The phytoplankton responses to Mn additions were subtle and readily masked by the responses to Fe. Using flow cytometry, we observed that Mn may influence the growth of some small phytoplankton taxa in late summer/autumn, when they represent an important part of the phytoplankton community. In addition, Mn induced changes in the bulk photophysiology signal of the spring community. These results suggest that the importance of Mn may vary seasonally, and that its control on phytoplankton growth may be associated with specific taxa.