From 1 - 4 / 4
  • Categories  

    This project developed an interim Population Consequence of Disturbance (iPCoD) model for blue whales (Balaenoptera musculus) and southern right whales (Eubalaena australis) to document a methodology for assessing population-level impacts of one, or multiple, wind farm developments off the southern Australian coast. The iPCoD model was developed in Europe to quantify how disturbances of individuals caused by physiological injury or changes in behaviour can have population-level consequences in data poor marine mammal populations. This model was adapted to suit Australian marine mammal species, highlighting key data gaps for locally threatened populations that overlap in range with the declared offshore wind areas in Australia. Due to the lack of baseline data currently available, this study documented a framework that can be updated as more information becomes available. We outlined how to leverage simulation-based population modelling as a tool for policymakers, industry and management authorities, to aid in environmental impact assessments, with a specific focus on data poor marine mammal populations.

  • This record provides an overview of the NESP Marine and Coastal Hub small-scale study - "Australia’s Coastal Shorebirds: Trends and Prospects". No data outputs were generated by this project. -------------------- Coastal Australia is home to 37 regularly occurring migratory shorebird species, with many protected areas including Ramsar sites designated on the basis of shorebird populations. Many migratory shorebirds are declining rapidly, and hence the focus of conservation efforts at multiple levels of government in Australia and overseas. However, trend data are now nearly 10 years old, meaning the information available to assess where conservation actions are needed most urgently and whether conservation efforts are helping species recover are outdated. To ensure populations have the best chance at recovery and that resources are allocated where they are most likely to have the greatest positive impacts, it is critical to maintain up-to-date information on species trends. This project analysed 30 years of shorebird monitoring data collected by citizen science groups across Australia and curated by BirdLife Australia’s National Shorebird Monitoring Program to update national trend estimates, while also assessing the relative effects of human pressure and conservation efforts on population trends. In particular, it focused on 15 migratory shorebird species whose conservation status was being reassessed by the Australian Department of Climate Change, Energy, the Environment and Water. This project sets the stage for building the next decade of coastal shorebird conservation activity in Australia, coordinated through the national mechanism of the End User: National Migratory Shorebird Conservation Action Plan Steering Committee, with representatives from national and state governments as well as leading shorebird experts. Outputs • Fact Sheet on Australia's coastal shorebird trends and prospects [written] • Final Project Report, including a short summary of recommendations for policy makers of key findings [written]

  • This record provides an overview of the NESP Marine and Coastal Hub Research Plan 2024 project "Assessing the vulnerability of southern right whale and blue whale populations to disturbance from windfarm developments". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Australia is entering a phase of rapid offshore renewable energy development, with several marine regions earmarked for wind farms. Underwater noise generated by the construction and operation of large wind turbines may affect species such as whales that rely on their acoustic environment to feed, breed and survive. This desktop study used available data and expert elicitation to develop an interim Population Consequences of Disturbance (iPCoD) model for blue whales and southern right whales in relation to one or multiple offshore wind farm developments off Portland and Gippsland, Victoria. This method has been used internationally to assess the impacts of offshore wind farm developments, including for harbour porpoises in British waters. The model follows a decision pathway to consider factors such as: • when and where development activities overlap with populations; • the proportion of populations affected; • the life stages and reproductive phases affected; and • the chances of repeated disturbance. The model was used to predict the timing and location of cumulative impacts of the proposed activities at a regional scale, identifying which species are at ‘high-risk’ and are a priority for further research; noise levels mitigation measures required to adequately reduce the risk of compromised population viability; what research is needed to better understand population-level consequences of noise; and which mitigation measures can substantially reduce the risk of population-level effects. The iPCoD model will be able to be updated as new data become available, and is relevant for assessment against other ocean-based activities such as oil and gas infrastructure and carbon capture and storage. Outputs • iPCoD model outputs [dataset] • Species distribution maps, as derived for existing observational data [spatial visualisation/story] • Final Project Report [written]

  • This record provides an overview of the NESP Marine and Coastal Hub small-scale study - "OzSET: Integration and publication of the Australian Surface Elevation Table dataset". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Australia’s coastal floodplains and wetlands provide essential ecosystem services and have immense cultural value. They regulate water quality, moderate flood and storm damage, and provide habitat for marine life including commercial fish and shellfish species. These environments are threatened by accelerating rates of sea-level rise. A national approach is needed to monitor and assess the way coastal floodplains and wetlands are changing in response to sea level rise. A useful measure of resilience is the extent to which coastal wetland sediments can accrete vertically at a rate matching that of sea-level rise. Assessing the resilience, or vulnerability, of these environments requires measurements of rates of vertical accretion, subsidence and elevation gain across a range of coastal settings. The Surface Elevation Table-Marker Horizon (SET-MH) technique measures the vertical accretion of coastal wetland sediments. This enables assessment of whether wetlands are keeping pace with sea level rise (measured at tide gauges), or subsiding relative to local sea level rise and thus vulnerable to permanent inundation and loss. Australia’s network of Surface Elevation Tables is one of the most extensive in the world, consisting of over 200 benchmark monitoring stations from Westernport Bay, Victoria to Darwin Harbour, NT. The network has developed largely without national coordination, and the data gathered have not been readily available to the research community or research users. This project collated SET data on accretion, subsidence and elevation change in mangroves, saltmarshes, seagrasses and tidal freshwater forests, and provides an initial analysis of accretion and surface elevation trends. This information is vital to coastal risk assessment, estimating blue carbon sequestration, and modelling potential predicted changes in other ecosystem services. Outputs • Collation of data from existing Surface Elevation Table (SET-MH) stations [dataset] • Final Technical Report