giant kelp
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub project E7 - "Assessing the feasibility of restoring giant kelp beds in eastern Tasmania". For specific data outputs from this project, please see child records associated with this metadata. -------------------- This project will extend an externally funded project conducted through UTAS commencing in 2018 to select for thermally tolerant and low-nutrient-tolerant giant kelp (Macrocystis pyrifera) genotypes, and to examine effects of acclimation of selected genotypes by pre-exposure to warm, nutrient-poor conditions. The proposed project will outplant pre-exposed selected genotypes of giant kelp as micro-sporophytes in an experiment with and without provision of an added source of nutrient. The work is designed to assess the feasibility of this approach as a means to develop minimum patch sizes for giant kelp that can be self-replacing and self-expanding, thus providing restoration and future climate-proofing options for this EPBC-listed marine community. Planned Outputs • Experimental data from macrocystis restoration • Final report
-
This record described kelp growth and ecophysiological data relevant to the thermal tolerance of specific warm-tolerant and 'normal' family-lines of giant kelp (Macrocystis pyrifera) from Tasmania, Australia. Australia’s giant kelp forests are listed as a Threatened Ecological Community under the Environment Protection and Biodiversity Conservation Act 1999. Habitat restoration is a potential tool for the conservation and management of giant kelp ecosystems. For habitat restoration to be effective, the cause of habitat decline must be understood and overcome. This is problematic when climate change is driving habitat loss since it cannot be reversed or ameliorated prior to restoration. A previous NESP project led by this team (Project E7, Marine Biodiversity Hub) identified warm-tolerant strains of giant kelp from remnant patches in eastern Tasmania, where the species has experienced precipitous declines due to ocean-warming. These strains have high potential to assist with ‘future-proofing’ kelp forest restoration, however it is still unclear what the physiological mechanisms are that provide their improved thermal tolerance. This work cultivated the warm-tolerant strains of giant kelp previously identified, along with giant kelp strains of normal tolerance, at both cool (16 °C) and warm temperatures (20 °C). The juvenile kelp was then harvested, and a suite of physiological traits that may be responsible for their differences in thermal tolerance were examined. These included nutrient usage (carbon and nitrogen content), cellular membrane processes (fatty acid contents), and photosynthesis (PAM fluorometry and photosynthetic pigments). The cultivation trials again illustrated the improved ability of the warm-tolerant strains to develop at stressful warm temperatures relative to normal giant kelp. This work demonstrated for their first time that the improved thermal performance of these strains may extend to the development and fertilisation of the earlier kelp ‘gametophyte’ life-stage. Despite the clear differences in growth between the two test groups, the physiological assessments illustrated a complex pattern of responses, some of which are contrary to expected based on prior knowledge of thermal performance in kelps. Nonetheless, these results indicate that the warm-tolerant strains of giant kelp have a greater capacity to alter the composition of their fatty acids and may be more efficient users of nitrogen (a key nutrient for growth and development). This new information will help inform ongoing kelp breeding and selection programs for future-proofing kelp restoration in Australia and globally. The improved understanding of the physiology of kelp thermal tolerance might also help with identifying individuals and populations of Macrocystis, and other kelps, that may be resilient to (or especially threatened by) ocean warming and climate change.
-
This record provides an overview of the NESP Marine and Coastal Hub bridging study - "Future-proofing restoration & thermal physiology of kelp". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Kelp forests create complex habitats that support a diverse and productive community of marine life. They underpin coastal food-webs, fisheries, and a suite of other ecosystem services including nutrient and blue carbon cycling. Across much of the world, kelp forests are in decline and under threat from stressors including urbanisation, overgrazing, ocean warming, and marine heatwaves driven by climate change. Australia’s giant kelp (Macrocystis pyrifera) forests are listed as a Threatened Ecological Community under the Environment Protection and Biodiversity Conservation Act 1999. Habitat restoration is a potential tool for the conservation and management of giant kelp ecosystems. Given the direct impacts of climate change and ocean warming, there is growing recognition of the need for habitat restoration to be ‘future proofed’. For restoration to be effective, the cause of habitat decline must be understood and overcome. This is problematic when climate change is driving habitat loss since it cannot be reversed or ameliorated prior to restoration. A previous NESP project led by this team (Project E7, Marine Biodiversity Hub) identified warm-tolerant strains of giant kelp from remnant patches in eastern Tasmania, where the species has experienced precipitous declines due to ocean-warming. These strains have high potential to assist with ‘future-proofing’ kelp forest restoration, however it is still unclear what the physiological mechanisms are that provide their improved thermal tolerance. It is also unknown whether cross-breeding the identified warm-tolerant giant kelp strains will affect and potentially improve their thermal tolerance capacity. This project explored the physiology of kelp thermal performance, specifically the mechanisms potentially responsible for the warm water tolerance identified in particular giant kelp strains. It confirmed the improved ability of the warm-tolerant strains to develop at stressful warm temperatures relative to normal giant kelp, and demonstrated for the first time that their improved thermal performance may extend to the development and fertilisation. The outcomes progress toward the identification of populations of Australian kelp that may be resilient to (or especially threatened by) ocean warming and climate change. Outputs • Ecophysiological measurements from laboratory experiments of warm-tolerant vs average giant kelp genotypes [dataset] • Final Project Report including a short summary of recommendations for policy makers of key findings [written]
-
NESP Marine Biodiversity Hub Project E7. Results from the outplanting of lab-selected and cultivated warm-adapted genotypes of giant kelp (Macrocystis pyrifera), at two trial restoration sites. A third restoration trial site had no surviving kelp, so those data were not included here. Data and details from lab-selection experiments can be found in the associated dataset - "NESP Marine Hub Project E7 - Macrocystis pyrifera thermal tolerance testing" https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/0b91d7fd-7d29-452f-954a-78cf75151035
-
Intraspecific variation in the thermal tolerance of microscopic giant kelp (Macrocystis pyrifera) sporophytes was tested using a common garden experiment, where 49 unique family-lines were raised under four different water temperatures (12, 16, 20, and 24°C). The unique family-lines were taken from ongoing giant kelp gametophyte cultures held at IMAS, and represented F1 offspring from seven 'selfed' individuals collected from 6 sites across ~250km in Tasmania, Australia, in addition to a site-level cross from each of the sites, and a panmictic cross using the 42 pure family lines. Survivorship of the selected warm-adapted family-lines after outplanting trials at restoration sites can be found here with the associated dataset "NESP Marine Hub Project E7 outplanted kelp survivorship". https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/908afd8c-cc7a-4ea3-a87e-4497ae8da87a