Keyword

EARTH SCIENCE | BIOLOGICAL CLASSIFICATION | PLANTS | MACROALGAE (SEAWEEDS) | RED ALGAE

3 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 3 / 3
  • Most research investigating how ocean warming and acidification will impact marine species has focused on visually dominant species, such as kelps and corals, while ignoring visually cryptic species such as crustose coralline algae (CCA). CCA are important keystone species that provide settlement cues for invertebrate larvae and can be highly sensitive to global ocean change. However, few studies have assessed how CCA respond to low emission scenarios or conditions. In a laboratory experiment, we examined the responses of temperate CCA assemblages to combined warming and acidification projected under low, medium, and high emissions. Net calcification and net photosynthesis significantly declined in all emissions scenarios, while significant reductions in relative growth rates and increases in percentage bleaching were observed in the highest emission scenario. The negative responses of CCA to both low and medium emissions suggest that they may be adversely impacted by combined warming and acidification by 2030 if current emissions are sustained. This will have far reaching consequences for commercially important invertebrates that rely on them to induce settlement of larvae. These findings highlight the need to take rapid action to preserve these critical keystone species and the valuable services they provide.

  • -- Layton et al. Chemical microenvironments within macroalgal assemblages: implications for the inhibition of kelp recruitment by turf algae. Limnology & Oceanography. DOI:10.1002/lno.11138 -- Kelp forests around the world are under increasing pressure from anthropogenic stressors. A widespread consequence is that in many places, complex and highly productive kelp habitats have been replaced by structurally simple and less productive turf algae habitats. Turf algae habitats resist re-establishment of kelp via recruitment inhibition; however little is known about the specific mechanisms involved. One potential factor is the chemical environment within the turf algae and into which kelp propagules settle and develop. Using laboratory trials, we illustrate that the chemical microenvironment (O2 concentration and pH) 0.0–50 mm above the benthos within four multispecies macroalgal assemblages (including a turf-sediment assemblage and an Ecklonia radiata kelp-dominated assemblage) are characterised by elevated O2 and pH relative to the surrounding seawater. Notably however, O2 and pH were significantly higher within turf-sediment assemblages than in kelp-dominated assemblages, and at levels that have previously been demonstrated to impair the photosynthetic or physiological capacity of kelp propagules. Field observations of the experimental assemblages confirmed that recruitment of kelp was significantly lower into treatments with dense turf algae than in the kelp-dominated assemblages. We demonstrate differences between the chemical microenvironments of kelp and turf algae assemblages that correlate with differences in kelp recruitment, highlighting how degradation of kelp habitats might result in the persistence of turf algae habitats and the localised absence of kelp.

  • This dataset has been superseded by https://metadata.imas.utas.edu.au/geonetwork/srv/eng/catalog.search#/metadata/0145df96-3847-474b-8b63-a66f0e03ff54 (Victorian Statewide Marine Habitat Map 2023). The Victorian seabed habitat map documents the distribution of broad benthic habitat types in Victorian Coastal Waters to the State’s 3 nautical mile jurisdictional limit. The map was created using a top-down modelling process whereby habitat descriptors were assigned using seafloor structure and biological information derived from multibeam sonar (Victorian Marine Habitat Mapping Project), bathymetric LiDAR (Future Coasts program) and observations from underwater video. Identification of benthic biota, to the lowest discernible taxonomic level, and substrate characteristics were recorded according to the Victorian Towed Video Classification scheme (Ierodiaconou et al. 2007).