From 1 - 4 / 4
  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project A2 - "Quantification of national ship strike risk". This project has been superseded by NESP Marine Biodiversity Hub Project C5 - "Quantification of risk from shipping to large marine fauna across Australia" (see link in Distribution and On-Line Resources section of this record). -------------------- Given Australian coastal development, and associated increases in shipping, ship collisions with marine fauna (specifically marine mammals and turtles) is of increasing concern. Tools and research are needed to spatially quantify the risk of ship strike to help develop management strategies. This work will use shipping density/speed data from the recent past, in parallel with species distribution/habitat models, to produce relative risk maps that can be used to identify areas and times where there is co-occurrence of at-risk marine fauna and shipping. From these maps, strategies (such as speed reduction zones/times) could be implemented to minimise the impact of vessel strike on marine fauna. Planned Outputs • Initial scoping report of ship strike risk, summarising what is currently known on at-risk species, the data available, shipping size/type data needed and providing recommendations on what species to investigate ranked from easiest to most difficult; • Identification of data deficiencies; • Full Australia-wide fine-scale shipping density and average speed maps for 2012 – present; • A suite of distribution information/maps for the various species investigated; • Risk map for selected species. With individual species, results delivered during the life of the project. The risk maps will range from full fine-scale maps when data is present, to coarse-scale ‘regions of concern’ for species where distribution data is limited to approximate extent.

  • This record provides an overview of the scope of NESP Marine Biodiversity Hub Project E1 - "Guidelines for analysis of cumulative impacts and risks to the Great Barrier Reef". No raw data products are anticipated for this project. -------------------- The project will develop guidance for the analysis of cumulative impacts and risks to the environmental, social and economic values of the GBR. The project will use existing information to develop guidance for use by GBRMPA, DoEE, the Queensland Government and proponents of future development proposals. The project will build on the work undertaken in the GBR Strategic Assessment and support works undertaken under the Reef 2050 plan. The guidance will provide a practical science-based approach to assessment of cumulative risks to the Reef. Research will focus on providing a general and repeatable approach to be applied at the whole-of-reef scale (to meet planning, assessment and reporting requirements of the GBRMPA) and also at the development-site-scale (to meet the environmental assessment requirements of the GBRMPA and future proponents). The guidance will be developed in close collaboration with the GBRMPA and DoEE to ensure it is practical and compatible with relevant legislation and policy applicable to proposed actions within the GBR. The project will include a case study focused on attributing impacts of pressures and their cumulative impacts on shallow-water coral reefs of eastern Australia (including cumulative impacts for the whole-of-GBR). It will also examine how this could be applied to shallow temperate reefs follow recent risk assessments conducted in NSW. Research is primarily designed to meet the specific needs of GBRMPA and future proponents. NSW DPI, QLD Government and Parks Australia, may also benefit from the case study and insights to assessment of cumulative impacts. Planned Outputs • Case Study Report on GBR & Coral Sea reefs pressure analysis. • Final report - guidance for analysis of cumulative impacts and risk

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project C1 - "Improving our understanding of pressures on the marine environment". For specific data outputs from this project, please see child records associated with this metadata. -------------------- The marine environment in Australia is influenced by a wide range of different pressures that impact on different parts of the marine ecosystem in different ways. This project aims to assist DoE, and other research users, to improve understanding of the potential impacts of anthropogenic disturbance to marine conservation values by providing up-to-date data and analyses on the spatial distribution of pressures and trends. The research is designed to inform decision making under the EPBC Act (acceptability of proposed activities, evaluation of effectiveness of mitigation measures) on NMES (including Key Ecological Features), implementation of multiple strategies in four Marine Bioregional Plans (i.e. strategies B, C, D and F), management of Commonwealth Marine Reserves (e.g. strategies 1 and 2 in the South-east Commonwealth Marine Reserve Network Management Plan 2013-23) and State of the Environment reporting. The project will involve a re-examination of the pressure analyses undertaken through the marine bioregional planning program and the 2011 SOE Report (marine chapter) and determine where pressure mapping can be improved to enhance those analyses (for instance for those pressures for which data deficiency was identified). It will also examine the strengths and weaknesses of the different pressure assessment methodologies used by both the MBP process and the SOE 2011 process and propose a methodology that can support both initiatives into the future. The project will provide pressures profiles for CMRs and will assist Parks Australia in understanding how pressures interact with the values they identify in CMRs. The project will also consider relative impact, and how spatial mapping can assist in understanding both relative and cumulative impact. As an adjunct to the cumulative impact investigation, the project will also investigate how changes in socio-economic valuing of conservation values may influence the degree of investment in understanding and management of cumulative impact. This particular work will further the risk-based approach to cumulative impact that was investigated under the NERP Hub. Planned Outputs • Produce description of summary of changes and trends in pressures on the commonwealth marine environment in the offshore marine environment from 1991 to 2010. • Production of inshore and offshore pressure summaries to inform SOE reporting (2011-2015) • Produce description of trends in pressures acting on the commonwealth marine environment (onshore & offshore) between 1991 & 2015, with refined summaries for all KEFs and CMRs. • Distribute pressure data and pressure data summaries through NPEI compliant data infrastructure. • Produce analysis and description of the likely future states (for example, climate (interannual and decadal), shipping, modification of fisheries activity, coastal eutrophication) • Re-evaluation of the pressure assessments published in the 2012 Marine Bioregional Plans , ensuring consistency of output, updating the profiles for all KEFs • Report on the changing socio-economic valuing of conservation values to the concept of acceptable impact, or acceptable risk of impact • Report on a risk based framework to manage the uncertainty information bases for different decision making requirements with example case

  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project C5 - "Quantification of risk from shipping to large marine fauna across Australia". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Given the substantial increases in coastal/port development along the Australian coastline, and associated increase in recreational and commercial shipping, there is an increasing potential for adverse interactions with marine species. Two risks associated with these activities for large marine fauna are ship collisions and the impact of chronic ocean noise. Research is urgently needed to quantify these risks in both a spatial and temporal context to help develop and implement appropriate management strategies. This project aims to provide directed science (species- and area-specific) to inform decision-making by the Department of Environment in its application of the EPBC Act. Planned Outputs • Initial scoping report of ship strike risk summarising what is currently known about species that were tentatively nominated as being at-risk for ship strike, the data available, shipping size/type data needed and recommendations on what species to investigate further with a qualitative ranking from easiest to most difficult. • AIS data base for the Australian EZ and initial processing protocols. • Full Australia-wide fine-scale shipping density and average speed maps for 2012 – present including information such as vessel length, beam and draft. This data will directly feed into future noise mapping. • A national map of approximate density of small vessel distribution based on available proxies such as population density, boat registration data and boat ramp locations. • A suite of distribution and density surfaces for the various species nominated during Phase 1; • Spatial and temporal risk profiles for selected species. The risk maps will range from full fine-scale maps when data is present, to coarse-scale ‘regions of concern’ for species where distribution data is limited to approximate extent. • An updated version of a database of ship strikes (historical and recent) within the Australian EEZ Report on national ship strike risk to the limits of current data and knowledge. • Report on our ship strike risk methodological developments • Report on initial shipping noise mapping • Report on the recommendations and findings of the 2017 workshop on chronic noise in the marine environment.