From 1 - 2 / 2
  • This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project C1 - "Improving our understanding of pressures on the marine environment". For specific data outputs from this project, please see child records associated with this metadata. -------------------- The marine environment in Australia is influenced by a wide range of different pressures that impact on different parts of the marine ecosystem in different ways. This project aims to assist DoE, and other research users, to improve understanding of the potential impacts of anthropogenic disturbance to marine conservation values by providing up-to-date data and analyses on the spatial distribution of pressures and trends. The research is designed to inform decision making under the EPBC Act (acceptability of proposed activities, evaluation of effectiveness of mitigation measures) on NMES (including Key Ecological Features), implementation of multiple strategies in four Marine Bioregional Plans (i.e. strategies B, C, D and F), management of Commonwealth Marine Reserves (e.g. strategies 1 and 2 in the South-east Commonwealth Marine Reserve Network Management Plan 2013-23) and State of the Environment reporting. The project will involve a re-examination of the pressure analyses undertaken through the marine bioregional planning program and the 2011 SOE Report (marine chapter) and determine where pressure mapping can be improved to enhance those analyses (for instance for those pressures for which data deficiency was identified). It will also examine the strengths and weaknesses of the different pressure assessment methodologies used by both the MBP process and the SOE 2011 process and propose a methodology that can support both initiatives into the future. The project will provide pressures profiles for CMRs and will assist Parks Australia in understanding how pressures interact with the values they identify in CMRs. The project will also consider relative impact, and how spatial mapping can assist in understanding both relative and cumulative impact. As an adjunct to the cumulative impact investigation, the project will also investigate how changes in socio-economic valuing of conservation values may influence the degree of investment in understanding and management of cumulative impact. This particular work will further the risk-based approach to cumulative impact that was investigated under the NERP Hub. Planned Outputs • Produce description of summary of changes and trends in pressures on the commonwealth marine environment in the offshore marine environment from 1991 to 2010. • Production of inshore and offshore pressure summaries to inform SOE reporting (2011-2015) • Produce description of trends in pressures acting on the commonwealth marine environment (onshore & offshore) between 1991 & 2015, with refined summaries for all KEFs and CMRs. • Distribute pressure data and pressure data summaries through NPEI compliant data infrastructure. • Produce analysis and description of the likely future states (for example, climate (interannual and decadal), shipping, modification of fisheries activity, coastal eutrophication) • Re-evaluation of the pressure assessments published in the 2012 Marine Bioregional Plans , ensuring consistency of output, updating the profiles for all KEFs • Report on the changing socio-economic valuing of conservation values to the concept of acceptable impact, or acceptable risk of impact • Report on a risk based framework to manage the uncertainty information bases for different decision making requirements with example case

  • Data for the project -Investigating the source of the high nitrate, low oxygen layer in the Leeuwin Current- is including in the file. The data include CTD data, ADCP data and Triaxus data from RV Investigator (Voyage IN2019_V03). Also the Sea Surface Height satellite data and CSIRO Atlas of Regional Seas (CARS) data are included as the supporting data. The MATLAB code including the code that calculate the rotated velocity and the transport of the EGC current in upper 300m including volume transport, salinity transport, heat transport and oxygen transport. The nitrate data from Triaxus is uncompleted and will be upload later with the code for calculating the nitrate transport.