meta-analysis
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
This record provides an overview of the scope and research output of NESP Marine Biodiversity Hub Project B2 - "Analysis and elicitation to support State of the Environment reporting for the full spectrum of data availability". No data outputs are expected for this project. -------------------- The availability and quality of observation data that may be used to support State of the Environment reporting lies on a spectrum from: (i) high quality (e.g. Reef Life Survey, Long term reef monitoring programme, Temperate Reef Monitoring programme, state-based MPA monitoring programmes); (ii) moderate quality (e.g. continuous plankton recorder, occasional by catch surveys); (iii) low quality (anecdotal information) to (iv) expert beliefs but no empirical observations. We currently lack a principled process for utilising and merging data of varying quality and from different sources to form a national perspective to support State of the Environment reporting. The key unifying principle to support such a process is the extent to which the available data is representative of the environmental asset in question. As the extent to which the empirical observations accurately represent the state of the asset in both space and time diminishes, so the reliance on expert opinion increases, to the limit where the only available information is expert opinion. This project will provide an over-arching framework to consider these issues, develop practical protocols for blending different data streams with or without experts’ judgement as appropriate, and thereby provide a foundation for improving State of Environment reporting for all types of data sources, from high to low quality. It will do this by developing and applying protocols to support development of the marine chapter of SoE 2106. This currently being developed within a separate CSIRO funded project. The project will use the experience of developing this chapter to make recommendations about appropriate methodologies for future environmental reporting. Importantly the statistical approach and analysis principles will be consistent regardless of the amount or quality of the information available. As a result the framework and analysis methods will remain relevant, even as the quality and quantity of environmental data at the department’s disposal changes. This will provide the consistency of analysis and reporting that is essential to SoE. Expected Outcomes • The provision of two or three examples that demonstrate a unified approach to the use of expert opinion in SoE reporting. These examples will be identified in close collaboration with the Department and will be developed in time to support the marine chapter of 2016 State of the Environment report, contingent on the availability of resources in the second year of the project and timely interaction with the department. • Assessments of the status and trends of environmental assets in the State of the Environment report will be based on a principled and statistically defensible process that can merges and utilises data from all sources including expert opinion.
-
1. Seabird species worldwide are integral to both marine and terrestrial environments, connecting the two systems by transporting vast quantities of marine-derived nutrients and pollutants to terrestrial breeding, roosting, and nesting grounds via the deposition of guano and other allochthonous inputs (e.g., eggs, feathers). 2. We conducted a systematic review and meta-analysis and provide insight into what types of nutrients and pollutants seabirds are transporting, the influence these subsidies are having on recipient environments, with a particular focus on soil, and what may happen if seabird populations decline. 3. The addition of guano to colony soils substantially increased nutrient levels compared to control soils for all seabirds studied, with cascading positive effects observed across a range of habitats. Deposited guano sometimes led to negative impacts, such a guanotrophication, or guano-induced eutrophication, which was often observed where there was an excess of guano or in areas with high seabird densities. 4. While the literature describing nutrients transported by seabirds is extensive, literature regarding pollutant transfer is comparatively limited, with a focus on toxic and bioaccumulative metals. Research on persistent organic pollutants and plastics transported by seabirds is likely to increase in coming years. 5. Studies were limited geographically, with hotspots of research activity in a few locations, but data were lacking from large regions around the world. Studies were also limited to seabird species generally listed as Least Concern on the IUCN Red List. As seabird populations are impacted by multiple threats and steep declines have been observed for many species worldwide, gaps in the literature are particularly concerning. The loss of seabirds will impact nutrient cycling at localised levels and potentially on a global scale as well, yet it is unknown what may truly happen to areas that rely on seabirds if these populations disappear. The information in this record includes three spreadsheets and R code. Descriptions are included below: - The spreadsheets contain all information extracted from the publications that were critically reviewed (n = 181). The first spreadsheet contains information regarding each publication (1 publication per row), such as study location, sampling methods. The second spreadsheet contains information about the seabird species studied in each publication (1 row per seabird species per publication). The third spreadsheet contains data for the meta-analysis (1 row per publication, except if the publication studied multiple species, then it would be 1 row per species per publication). - The R code is for the meta-analyses that were undertaken. Comments are included within the code plus detailed information can be found in the Methods section of the paper.