RV Investigator
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
Trace element data collected from 18 stations near the Mertz Glacier on the 2019 ENRICH voyage. Sea water was collected using a 12-bottle trace metal rosette (TMR) and acidified for analysis back in Hobart. Samples were measured using an offline seaFAST pre-concentration system and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) at the University of Tasmania. This data contributed to Smith et al., Circumpolar Deep Water and shelf sediments support late summer microbial iron remineralisation in Global Biogeochemical Cycles (2021).
-
This record provides an overview of the NESP Marine and Coastal Hub Research Plan 2024 project "Environmental DNA for measuring offshore marine biodiversity: what can DNA in water collected from the RV Investigator tell us?". For specific data outputs from this project, please see child records associated with this metadata. -------------------- Environmental DNA (eDNA) is genetic material that is found in the environment. In marine ecosystems eDNA is ubiquitous in seawater and is derived from everything from bacteria to invertebrates and fishes. eDNA can be recovered by filtering water samples and then used it to characterise biodiversity. Using environmental DNA (eDNA) found in seawater to get a snapshot of the species present in an area is an emerging technology with diverse applications in marine ecosystem monitoring. This project will collect a large eDNA dataset during the Southeast Australian Marine Ecosystem Survey (SEA-MES). The eDNA samples will be taken from the RV Investigator throughout the water column at offshore sites stretching from Tasmania to NSW, including sites within the South-east Marine Park Network. The voyage includes parallel collection of biodiversity data using a suite of conventional methods (nets, cameras, and acoustics) which will allow for an assessment of how eDNA compliments these approaches. The project will provide a new baseline and unique eDNA-based perspective on the biodiversity of the southeast Australian marine region. It will also allow for evaluation of eDNA sampling methods and guidance for design of effective, scalable, and non-extractive biomonitoring tools for marine ecosystems. Outputs • eDNA sequences with associated collection metadata (x2 voyages x50 sites) [dataset] • Final project report [written]