Keyword

EARTH SCIENCE | HUMAN DIMENSIONS | ENVIRONMENTAL IMPACTS

4 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 4 / 4
  • The data describes number of vessels, engine power, gross tonnage and fishing effort by year (1950-2017), targeted functional group, and fishing gear. Fishing effort estimates were derived from country-level fishing fleet capacity data publicly available, following the method described in Rousseau et al (2019; https://doi.org/10.1073/pnas.1820344116) and methods improvement reported in Rousseau et al. (in prep). The data coverage is global, but estimates are given at the Exclusive Economic Zone-, Large Marine Ecosystem-, and Food Agriculture Organisation-level. The data was collected for a wide range of uses, including to inform global and regional marine ecosystem models and to understand the long-term evolution of fishing and its socio-ecological implications in the global ocean.

  • Latex balloons act like plastic in the ocean: they can travel far from their point of origin on atmospheric and water currents and float at the sea surface where they can be eaten by wildlife that mistake it for food. This study quantified the degradation behaviours of latex balloons in saltwater, freshwater, and industrial compost windrows over 16 weeks. The degradation of latex balloons was quantified with bi-weekly measurements of 1) changes in mass; 2) ultimate tensile strength; and 3) changes in surficial composition of balloons via attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). This study tested whether degradation differed between two balloon colours (blue and white) and whether degradation differed between balloons whose packaging labels included the word "biodegradable" and balloons whose packaging did not contain the word "biodegradable", and were thus labeled as "traditional" balloons. Thus, these data consist of 1) mass measurements; 2) load-extension data used to determine ultimate tensile strength; and 3) ATR-FTIR spectra of latex balloons across the variables balloon type (biodegradable; traditional), colour (blue; white), and week sampled (0-16 weeks). Also included are measurements of balloons that did not undergo treatments and are either straight out of the package ("new") or balloons that were inflated but did not undergo any treatments ("inflated").

  • Categories    

    The National Outfall Database (NOD) project addresses the need of government and community to understand the impacts on health and the ocean environment that occur from sewerage outfalls around Australia. This dataset is part of the assessment and mapping of the marine impacts of wastewater disposal to ocean and estuarine waters in Australia. The data collected in this study is intended to be used to assist decision makers to understand risk and prioritise investment, to help the public understand water and wastewater management and make decisions when choosing recreation locations, and private operators seeking to re-use wastewater or products found within wastewater. Each outfall is divided into three levels of data; one (1) being basic information such as location, treatment, governance and size; two (2) being more detailed information taken from publicly available annual environmental monitoring reports, licence and other information; and three (3) containing highly detailed information such as daily performance data and receiving waters ecosystem assessments and studies to enable researchers and others to undertake comparative studies. The data custodian will make a data report and methodology available to provide a full explanation of this database. The National Outfall Database is an online resource available here: https://www.outfalls.info/ The database currently tracks 48 indicators across 192 monitoring sites. The data is also available for download in CSV format in the "online resources" section of this record, and will continue to be updated as new data becomes available (data currently available to 30/06/2022 - last checked 19/01/2024.

  • Categories    

    Investigations of the impact of sewage and heavy metal inputs on inshore rocky reef communities have been limited to date because the scale of information on levels of pollutants has been much broader than the span of transects at sites investigated. As a consequence, analyses have been confounded by poor information on the variety of stressors operating at any site. Finer resolution data on pollutants are needed. To address this deficiency, the influence of sewage, heavy metals and other pollutants were assessed by collecting sediment samples at Reef Life Survey ecological monitoring sites and measuring a range of associated markers. This includes basic biogeochemical information (pH, turbidity, total phosphate, TKN, total organic carbon), stable isotopes (delta15N, delta13C), heavy metal concentrations, hydrocarbon concentrations.