From 1 - 2 / 2
  • Categories  

    This dataset describes seagrass at 34 individual meadows from surveys of Dugong and Turtle habitats in the North-West Torres Strait for November 2015 and January 2016. The data includes information on seagrass species, biomass, diversity, and BMI and algae percent cover. This meadow (polygon) layer provides summary information for all survey sites within the 34 individual seagrass meadows mapped in 2015-2016 with information including individual meadow ID, meadow location (intertidal/shallow subtidal/subtidal), meadow density based on mean biomass, meadow area, dominant seagrass species, seagrass species present, survey dates, survey method, and data custodian. ESRI and Landsat satellite image basemaps were used as background source data to check meadow and site boundaries, and re-map where required. The data described by this record is current as of 01/12/2016 for use in the Seamap Australia project. Newer versions of the data, additional 'point' data for 853 sites, and alternative download formats are available from eAtlas. http://eatlas.org.au/geonetwork/srv/eng/metadata.show?uuid=034ce816-0777-4bbd-aefc-8b73bd540245

  • The following dataset contains particulate iron data collected during the 2018 occupation of the CLIVAR SR03 (GEOTRACES GS01) transect south of Tasmania, Australia. This data is used ancillary to measurements of dissolved iron in the same transect for a manuscript in preparation by Traill et al. (2023). While modelling efforts have furthered our understanding of marine iron biogeochemistry and its influence on carbon sequestration, observations of dissolved iron (dFe) and its relationship to physical, chemical and biological processes in the ocean are needed to both validate and inform model parameterisation. Where iron comes from, how it is transported and recycled, and where iron removal takes place, are critical mechanisms that need to be understood to assess the relationship between iron availability and primary production. To this end, hydrographic and trace metal observations across the GO-SHIP section SR3, south of Tasmania, Australia, have been analysed in tandem with the novel application of an optimum multiparameter analysis. From the trace-metal distribution south of Australia, key differences in the drivers of dFe between oceanographic zones of the Southern Ocean were identified. In the subtropical zone, the source of dFe was constrained by waters advected off the continental shelf, and by remineralization in recirculated modified mode and intermediate water masses of the Tasman Outflow. In the subantarctic zone, the seasonal replenishment of dFe in Antarctic surface and mode waters appears to be sustained by iron recycling in the underlying mode and intermediate waters. In the southern zone, the dFe distribution is likely driven by dissolution and scavenging by high concentrations of particles along the Antarctic continental shelf and slope, entrained in high salinity shelf water. This approach to trace metal analysis may prove useful in future transects for identifying key mechanisms driving marine dissolved trace metal distributions.