4 record(s)
Type of resources
Contact for the resource
Provided by
From 1 - 4 / 4
  • Categories    

    Trace element data collected from 18 stations near the Mertz Glacier on the 2019 ENRICH voyage. Sea water was collected using a 12-bottle trace metal rosette (TMR) and acidified for analysis back in Hobart. Samples were measured using an offline seaFAST pre-concentration system and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) at the University of Tasmania. This data contributed to Smith et al., Circumpolar Deep Water and shelf sediments support late summer microbial iron remineralisation in Global Biogeochemical Cycles (2021).

  • An increasing number of studies are considering Fe and ligand concentrations, providing data of trace element availability across the remote Southern Ocean region (Ardiningsih et al., 2021, Gerringa et al., 2020, Hassler et al., 2017, Thuroczy et al., 2012, Thuroczy et al., 2011, Caprara et al., 2016 and references therein). However, studies seldom focus on polar coastal environments which are especially sensitive to climate-induced changes. To anticipate how these changes may impact Fe availability, we must first understand the drivers of ligand supply to the Antarctic coast and offshore. The newly compiled Southern Ocean Ligand (SOLt) Collection includes all publicly available Fe complexation datasets for the Southern Ocean including dissolved Fe concentrations, Fe-binding ligand concentrations, and complexation capacities for 25 studies between 1995 - 2019.

  • Categories    

    These data are from a voyage (IN2019_V01) on RV Investigator with the Australian Antarctic Division (AAD), that took place during January-March 2019. The Chief Scientist was Mike Double from the AAD. Clara R. Vives collected biogeochemical data on the voyage, and performed a series of incubation experiments for her PhD. The purpose of the study was to investigate the effects of iron and light on phytoplankton growth off East Antarcitca. Data include CTD nutrients, chlorophyll and oxygen as well as underway phytoplankton physiology (measured as the photochemical efficiency) and pCO2. Some data are duplicated but not in exactly the same format on the CSIRO Data Trawler.

  • This dataset contains temporal and compositional data on the Southern Ocean Time Series (SOTS) 1000 m depth sediment trap between 2010 and 2019. This study has added new data on 40 trace metals and isotopes (TEIs) in addition to the sinking particle flux data available on the Australian Ocean Data Network (AODN portal) and published in Wynn-Edwards et al. (2020; Frontiers in Earth Science). The TEI data was collected by strong acid digestion of archived SOTS 1000 m sinking particle samples collected from sediment trap deployments from 2010 to 2019. Following digestion, sinking particle samples were analysed for TEI concentration at the UTAS Central Science Laboratory using High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS). The data presented here contains TEI concentration data, elemental fluxes calculated from the sediment trap mass fluxes (Wynn-Edwards et al., 2020) and a range of lithogenic particle fluxes derived from various upper continental crust concentrations reported in the literature. Several iterations of lithogenic flux are included for key lithogenic tracers Al, Fe, Ti and Th, with some mean fluxes of the combination of these tracers included. Here, several multi-tracer lithogenic fluxes are included based on the inclusion of Th concentrations using isotope dilution or linear calibration methods. The final lithogenic fluxes used in the publication are linearly calibrated Al, Ti, Fe and Th flithogenic fluxes and the mean value of these four tracers. Additional V and Pb tracer concentrations were used to assess anthropogenic influences. These results were used to estimate seasonal and interannual lithogenic particle flux in the subantarctic Southern Ocean. Additionally, particle composition, sources and provenance were examined using the attached data. The findings were used to provide an estimate of dust deposition in the subantarctic Southern Ocean south of Australia, contextualised by particle trajectory reanalysis, satellite data products and biogeochemical processes.