From 1 - 2 / 2
  • Categories  

    This project developed an interim Population Consequence of Disturbance (iPCoD) model for blue whales (Balaenoptera musculus) and southern right whales (Eubalaena australis) to document a methodology for assessing population-level impacts of one, or multiple, wind farm developments off the southern Australian coast. The iPCoD model was developed in Europe to quantify how disturbances of individuals caused by physiological injury or changes in behaviour can have population-level consequences in data poor marine mammal populations. This model was adapted to suit Australian marine mammal species, highlighting key data gaps for locally threatened populations that overlap in range with the declared offshore wind areas in Australia. Due to the lack of baseline data currently available, this study documented a framework that can be updated as more information becomes available. We outlined how to leverage simulation-based population modelling as a tool for policymakers, industry and management authorities, to aid in environmental impact assessments, with a specific focus on data poor marine mammal populations.

  • Categories  

    This aim of this project is to identify and map critical habitats for Australian sea lions (Neophoca cinerea) to assess the ecological value of different habitats for sea lions and identify risks to their populations. Through this project we collected animal-borne video, GPS, time-depth and accelerometer/magnetometer data from eight adult female Australian sea lions from Olive Island (n=4) on the western Eyre Peninsula and Seal Bay (n=4) on Kangaroo Island in South Australia. Sea lions were instrumented with animal-borne cameras with integrated accelerometers/magnetometers (CATS Cam, 135 x 96 x 40 mm, 400 g) and satellite-linked GPS loggers with integrated time-depth recorders (SPLASH-10, Wildlife Computers, 100 x 65 x 32 mm, 200 g). Sea lions were sedated and anaesthetised and bio-logging instruments were glued to the pelage on the dorsal midline. Bio-logging instruments were recovered after a single foraging trip (~1-6 days). Populations of the endangered Australian sea lion have declined by >60% over the last 40 years. Australian sea lion populations show a marked uneven distribution in abundance across their range, which suggests that localised risk profiles from threats vary at small spatial scales. Fine scale differences in habitat-use are thought to underpin these differences. However, knowledge of the habitats that are critical to Australian sea lions is poor and their vulnerability to human impacts and threats at the fine-scale is not well understood. The data collected in this project provides fundamental information on critical benthic habitats for Australian sea lions, the differences in foraging behaviour of individual sea lions and their prey preferences. The information collected under this project improves our understanding of threats to sea lion populations and will support future conservation actions to recover the species.