EARTH SCIENCE | CLIMATE INDICATORS | PALEOCLIMATE INDICATORS | PLATE TECTONICS
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
Ocean currents are strongly controlled by seafloor topography. Recent studies have shown that small-scale features with slopes steeper than 0.05° significantly affect subsurface eddy velocities and the vertical structure of ocean circulation patterns. Such slope gradients represent the majority of the present-day oceanic basins. Modeling past oceanographic conditions for key climate stages requires similarly detailed paleo seafloor topography grids, in order to capture ocean currents accurately, especially for ocean models with sufficient resolution (<0.1°) to resolve eddies. However, existing paleobathymetry reconstructions use either a forward modeling approach, resulting in global grids lacking detailed seafloor roughness, or a backward modeling technique based on sediment backstripping, capturing realistic slope gradients, but for a spatially restricted area. Both approaches produce insufficient boundary conditions for high-resolution global paleo models. Here, we compute high-resolution global paleobathymetry grids, with detailed focus on the Southern Ocean, for key Cretaceous and early Cenozoic climate stages. We backstrip sediments from the modern global bathymetry, allowing the preservation of present-day seafloor slope gradients. Sediment isopach data are compiled from existing seismo-stratigraphic interpretations along the Southern Ocean margins, and expanded globally using total sediment thickness information and constant sedimentation rates. We also consider the effect of mantle flow on long-wavelength topography. The resulting grids contain realistic seafloor slope gradients and continental slopes across the continent-ocean transition zones that are similar to present-day observations. Using these detailed paleobathymetry grids for high-resolution global paleo models will help to accurately reconstruct oceanographic conditions of key climate stages and their interaction with the evolving seafloor.
-
Declining atmospheric CO2 concentrations are considered the primary driver for the Cenozoic Greenhouse-Icehouse transition, ~34 million years ago. A role for tectonically opening Southern Ocean gateways, initiating the onset of a thermally isolating Antarctic Circumpolar Current, has been disputed as ocean models have not reproduced expected heat transport to the Antarctic coast. Here we use high-resolution ocean simulations with detailed paleobathymetry to demonstrate that tectonics did play a fundamental role in reorganising Southern Ocean circulation patterns and heat transport, consistent with available proxy data. When at least one gateway (Tasmanian or Drake) is shallow (300 m), gyres transport warm waters towards Antarctica. When the second gateway subsides below 300 m, these gyres weaken and cause a dramatic cooling (average of 2–4°C, up to 5°C) of Antarctic surface waters whilst the ACC remains weak. Our results demonstrate that tectonic changes are crucial for Southern Ocean climate change and should be carefully considered in constraining long-term climate sensitivity to CO2.