From 1 - 2 / 2
  • Over the past fifty years, Eastern Tasmanian waters have experienced rapid warming, primarily due to the extension of the East Australian Current. This has driven expansion of warm-water biota and decline of those adapted to cooler conditions, including phytoplankton. Presently, plankton monitoring, including diatoms along Eastern Tasmania, spans <100 years. This study reconstructed diatom communities throughout a sediment core spanning 9,000 years before present (9 kyrs BP), using microfossil analysis and molecular techniques, including sedimentary ancient DNA (sedaDNA) and NRS 18S rRNA from a 10-year water column archive at the Maria Island IMOS NRS mooring. Microfossil analysis revealed a dominance of strongly silicified benthic taxa (Campylodiscus, Diploneis, Paralia, Pyxidicula, Triceratium). Notably, Paralia sulcata showed a shift ~6 kyrs BP from small to larger cells, possibly reflecting a transition from a coastal to shelf ecosystem. However, microfossils underrepresented lightly silicified planktonic diatoms. Molecular methods detected higher diatom diversity, though up to 50% of sedaDNA reads remained unclassified due to reference library limitations. Lightly silicified planktonic genera (Chaetoceros, Corethron, Lithodesmium, Rhizosolenia) were identified only via molecular approaches and comprised 73% of sedaDNA and 88% of 18S rRNA records. Of 10 shared diatom families, 5, 15, and 4 were unique to microscopy, sedaDNA, and 18S rRNA, respectively. SedaDNA also captured greater benthic diversity. Our findings revealed limitations in reconstructing historic diatom assemblages from sediment cores. Microfossils faced constraints due to difficulties in morphological identification and preservation biases. In contrast, sedaDNA analysis yielded finer taxonomic resolution, provided access to high-quality reference sequence libraries were available.

  • Predicting phytoplankton impacts in response to a changing climate on Tasmania's east coast is presently based on short-term plankton data sets (~75 years). However, given the vital contribution coccolithophores make to oceanic carbon pumps, it is crucial to understand longer-term assemblage trends better. Here, we expand the archive of calcareous nannoplankton in southeast Australian waters by analysing coccolithophore microfossils in a ~2.68m long marine sediment core from the climate hotspot of Maria Island, Tasmania, using polarising light and scanning electron microscopy techniques in combination with analysis of sedimentary ancient DNA (sedaDNA). Coccolith assemblages at this site represent the complex interplay between the East Australian Current, Subantarctic incursions, and the hydrodynamics driving Subtropical Front positioning. Microfossil analysis revealed a shift from a cold to warm-adapted assemblage ~8 200 years BP, expressed by a striking transition from assemblages dominated by the cold-water species Gephyrocapsa muellerae to warmer water species Emiliania huxleyi. This transition compares with similar occurrences in the literature at ~11 000 years reported in the Southern Ocean and 12 000 years in the Tasman Sea, reflecting a broad shift of the Subtropical Front. E. huxleyi microfossils displayed the highest relative abundance, but less abundant larger taxa (including Calcidiscus, Coccolithus, Helicosphaera) accounted for >50% of coccolith CaCO3 sequestration, indicating large densely calcified species do the 'heavy-lifting' in terms of carbon cycling within mixed coccolithophore assemblages. Analysis of sedaDNA showed coccolithophores comprised the largest number of eukaryote molecular sequences recovered (~44%), far exceeding diatoms and dinoflagellates.