EARTH SCIENCE | BIOSPHERE | ECOLOGICAL DYNAMICS | ECOSYSTEM FUNCTIONS | TROPHIC DYNAMICS
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
Ecosystem data was collected as part of an integrated study of the continental shelf over a 2 and a half year period between November 2015 and January 2018. Data were collected bi-monthly through the spring to autumn (November, January, March, May). Stations were situated perpendicular to shelf bathymetry, ranging in depth from ~50 m to 100 m near the edge of the shelf and were located between 5 km and 15 km from land; encompassing from south Storm Bay, past the southern tip of Bruny Island and into the Southern Ocean (south-east Tasmania, Australia). Data collected focused on each trophic level, characterizing the zooplankton community, fish schools and marine predators. The overarching aim of the study was to investigate the effects of long term warming, and a marine heatwave event on zooplankton dynamics in terms of community response variables and the flow-on effects of changing lower-trophic level dynamics for top predators.
-
Diel partitioning of animals within ecological communities is widely acknowledged, yet rarely quantified. Investigation of most ecological patterns and processes involves convenient daylight sampling, with little consideration of the contributions of nocturnal taxa, particularly in marine environments. Here we assess diel partitioning of reef faunal assemblages at a continental scale utilizing paired day and night visual census across 54 shallow tropical and temperate reefs around Australia. Day/night differences were most pronounced in the tropics, with fishes and invertebrates displaying distinct and opposing diel occupancy on coral reefs. Tropical reefs in daytime were occupied primarily by fishes not observed at night (64% of all species sighted across day and night, and 71% of all individuals). By night, substantial emergence of invertebrates not otherwise detected during sunlit hours occurred (56% of all species, and 45% of individuals). Nocturnal emergence of tropical invertebrates corresponded with significant declines in the richness and biomass of predatory and herbivorous diurnal fishes. In contrast, relatively small diel changes in fishes active on temperate reefs corresponded to limited nocturnal emergence of temperate invertebrates. This reduced partitioning may, at least in part, be a result of strong top-down pressures from fishes on invertebrate communities, either by predation or competitive interference. For shallow reefs, the diel cycle triggers distinct emergence and retreat of faunal assemblages and associated trophic patterns and processes, which otherwise go unnoticed during hours of regular scientific monitoring. Improved understanding of reef ecology, and management of reef ecosystems, requires greater consideration of nocturnal interactions. Without explicit sampling of nocturnal patterns and processes, we may be missing up to half of the story when assessing ecological interactions.
-
Southeastern Australia's marine waters are undergoing a trend of increased warming, surpassing the global average. This area has emerged as an alluring location for research on planktic microfossils, particularly dinoflagellate cysts, which are abundant in contemporary and Late Quaternary sediments. The composition of dinoflagellate cyst assemblages offers valuable information about the physical and biogeochemical properties of mid-latitude waters in this region. This study presents an analysis of cyst assemblages from marine sediment cores from waters inshore and offshore Maria Island, Tasmania, southeast Australia, up to 9 kyrs BP. The dominant cysts were Protoceratium reticulatum, Protoperidinium spp. (P. avellana, P. conicum, P.minutum, P. oblongum, P. subinerme, P. shanghaiense) and Spiniferites spp. (S. bulloideus, S. hyperacanthus, S. membranaceus, S. mirabilis, S. pachydermus, and S. ramosus). Inshore, Spiniferites spp. were more abundant (up to 61%), while P. reticulatum was dominant (up to 80%) at the offshore site. Impagidinium spp. and Nematosphaeropsis labyrinthus were exclusively detected offshore, with their increasing occurrence from 6 kyrs BP to present suggesting a transition from shallow coastal to stable deep-water habitat. Cysts of the Alexandrium tamarense complex were detected over the past 140 years and 9 kyrs BP at the inshore and offshore sites respectively, indicating an endemic long-term presence. Low abundances of Gymnodinium catenatum cysts were detected exclusively inshore from 50 years ago to present, suggesting recent bloom events. The limited southward penetration of the East Australian Current is indicated by the lack of warm-water cyst taxa such as Lingulodinium machaerophorum. Unlike coccolithophores, previously studied in the same sediment core, no discernible shift from cold to warm-water dinoflagellate cyst species was observed. The documentation of dinoflagellate cyst assemblages presented in this study will aid in predicting the effects of climate change, eutrophication, and introduction of novel species on local and broader community dynamics.