EARTH SCIENCE | BIOLOGICAL CLASSIFICATION
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
Parks Australia - Indian Oceans Territory (IOT) Grants Project: Satellite-Derived Bathymetry and Seafloor Habitat Classification Mapping of Christmas Island Marine Park This project mapped Satellite-derived Bathymetry (SDB) and seafloor habitats at 2m horizontal spatial resolution, for the shallow waters (~0-25 m) of Christmas Island Marine Park. SDB data was processed using EOMAP's proprietary software and algorithm package Watcor-X, which generates SDB using multipspectral satellite data. The SDB is based on the physics-based inversion method of the radiative transfer equation which models the pathway of light and its interaction through different media (e.g. atmosphere and water column). The thematic classification of the seabed was based on multispectral satellite image analytics. Satellite imagery was pre-processed by applying a set of image correction procedures to reduce environmental noise, resulting in a standardised reflectance surface of the subsurface and seafloor. The information on seafloor reflectance at different wavelengths was used to run an object-based classification procedure which groups objects of similar spectral characteristics, shape and texture into different classes of major seafloor habitat type. These critical geospatial data layers provide the essential environmental baseline information for the long-term monitoring and management of the IOT Marine Parks. Having access to digital, georeferenced, high-resolution, satellite-derived maps of bathymetry and benthic habitats of shallow water areas, is of fundamental use in the areas of navigation and safety-at-sea, ecological research, environmental modelling, management and conservation, and monitoring the impacts from climate change.
-
The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including Geographe Bay in the southwest Capes region. The marine environment at this location varies from extensive seagrass meadows in protected waters, to kelp-dominated granite and limestone reefs in areas of high wave energy. A small number of corals are also found throughout the region, reflecting the influence of the southward flow of the Leeuwin Current. The fish fauna is also diverse, with a high proportion of endemic species.
-
The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including Jurien Bay. The Jurien Bay marine environment is highly diverse, and is home to a wide variety of species, including sea lions and sea birds on the many offshore islands. Limestone reef and seagrass habitats in the area support a diverse fish and invertebrate fauna, and a local crayfishing industry is based around the Western Rock Lobster (Panulirus cygnus).
-
The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including the Abrolhos Islands, a group of 122 limestone outcrops surrounded by fringing reed ca. 60km west from the city of Geraldton. The Abrolhos research location is the most northerly of the Marine Futures sampling sites, selected due to the unique mixture of tropical coral reef habitats, and temperate reef and seagrass communities.The hydroacoustics data were processed to construct full coverage maps of bathymetry and textural information.
-
The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including Point Ann, a site which lies within the Fitzgerald Biosphere, a UNESCO designated International Biosphere Reserve and one of the largest and biologically significant National Parks in Australia (DEC) on West Australia’s south coast, approximately 180km east of Albany.
-
The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. This project record provides linkage to each of metadata records describing data collected from the 9 study areas: Jurien Bay, Rottnest, Abrolhos Islands, Point Ann, Middle Island, Mount Gardner, Broke Inlet, and Geographe Bay. To access the source datasets from each study site in their original (unaggregated) form, see child records linked to this parent record.
-
The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including Middle Island, the project's easternmost site located within the Recherche Archipelago. The Recherche Archipelago provides habitats for a diverse range of both terrestrial and marine species, and can be accessed either by vessel from the town of Esperance, or by four wheel drive along the coastal roads adjoining the Cape Arid National Park.
-
Parks Australia - Our Marine Parks Grants Round 3 Project: Satellite Mapping of Bathymetry and Habitats of Ashmore and Cartier Island Marine Parks This project aimed to map the satellite-derived bathymetry (SDB) and benthic habitats at 2m horizontal spatial resolution, for the shallow waters (~0-25 m) of the Ashmore Reef and Cartier Island Marine Parks. These critical geospatial data layers provide the essential environmental baseline information for the long-term monitoring and management of these Marine Parks. Mapping the shallow water zone is of importance both from an environmental and socioeconomic perspective. Having access to digital, georeferenced, high-resolution, satellite-derived maps of bathymetry and benthic habitats of shallow water areas, is of fundamental use in the areas of navigation, ecological research, environmental modelling, management and conservation, and monitoring the impacts from climate change.
-
The Marine Futures Project was designed to benchmark the current status of key Western Australian marine ecosystems, based on an improved understanding of the relationship between marine habitats, biodiversity and our use of these values. Approximately 1,500 km2 of seafloor were mapped using hydroacoustics (Reson 8101 Multibeam), and expected benthic habitats "ground-truthed" using towed video transects and baited remote underwater video systems. Both sources of information were then combined in a spatial predictive modelling framework to produce fine-scale habitat maps showing the extent of substrate types, biotic formations, etc. Surveys took place across 9 study areas, including Broke Inlet, a relatively remote area 400km south of Perth, between the towns of Augusta and Albany. The nearest major town, Manjimup, is situated 100km north and the small coastal settlement Windy Harbour approximately 30km west of Broke Inlet. The Inlet is entirely surrounded by the D’Entrecasteaux National Park, which is accessible via a sealed road and attracts limited ‘through-traffic’ to the area. The marine environment off Broke is one fairly untouched by major tourism pressures and thus this location was selected due to its relative inaccessibility.
-
Parks Australia - Indian Oceans Territory (IOT) Grants Project: Satellite-Derived Bathymetry and Seafloor Habitat Classification Mapping of Cocos (Keeling) Island Marine Park This project mapped Satellite-derived Bathymetry (SDB) and seafloor habitats at 2m horizontal spatial resolution, for the shallow waters (~0-25 m) of the Cocos (Keeling) Islands Marine Park. SDB data was processed using EOMAP's proprietary software and algorithm package Watcor-X, which generates SDB using multipspectral satellite data. The SDB is based on the physics-based inversion method of the radiative transfer equation which models the pathway of light and its interaction through different media (e.g. atmosphere and water column). The thematic classification of the seabed was based on multispectral satellite image analytics. Satellite imagery was pre-processed by applying a set of image correction procedures to reduce environmental noise, resulting in a standardised reflectance surface of the subsurface and seafloor. The information on seafloor reflectance at different wavelengths was used to run an object-based classification procedure which groups objects of similar spectral characteristics, shape and texture into different classes of major seafloor habitat type. These critical geospatial data layers provide the essential environmental baseline information for the long-term monitoring and management of the IOT Marine Parks. Having access to digital, georeferenced, high-resolution, satellite-derived maps of bathymetry and benthic habitats of shallow water areas, is of fundamental use in the areas of navigation and safety-at-sea, ecological research, environmental modelling, management and conservation, and monitoring the impacts from climate change.