Keyword

States, Territories (Australia) | South Australia

5 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 5 / 5
  • The Aqua and Orbview satellites carry a MODIS and SeaWIFS sensors (respectively) that observes sunlight reflected from within the ocean surface layer at multiple wavelengths. These multi-spectral measurements are used to infer the concentration of chlorophyll-a (Chl-a), most typically due to phytoplankton, present in the water. There are multiple retrieval algorithms for estimating Chl-a and aggregating the data over time. This data set is a reprocessed copy of 9km monthly and 8-day versions produced globally by NASA, adjusted for the Southern Ocean south of latitude 30S. The full methodology is described in Johnson, R., Strutton, P.G., Wright, S.W., McMinn, A., Meiners, K.M., 2013. Three improved satellite chlorophyll algorithms for the Southern Ocean. Journal of Geophysical Research: Oceans. doi: 10.1002/jgrc.20270. It is expected that the data set will be periodically updated with contemporary data as it becomes available. There are four sub-streams within this data set. A monthly and an 8-day series for MODIS/Aqua and similarly for SeaWIFS. Note that SeaWIFS ceased operation in late 2010 so there will be no further SeaWIFS data. The data represented by this record is weekly data for SeaWIFS.

  • The Aqua and Orbview satellites carry a MODIS and SeaWIFS sensors (respectively) that observes sunlight reflected from within the ocean surface layer at multiple wavelengths. These multi-spectral measurements are used to infer the concentration of chlorophyll-a (Chl-a), most typically due to phytoplankton, present in the water. There are multiple retrieval algorithms for estimating Chl-a and aggregating the data over time. This data set is a reprocessed copy of 9km monthly and 8-day versions produced globally by NASA, adjusted for the Southern Ocean south of latitude 30S. The full methodology is described in Johnson, R., Strutton, P.G., Wright, S.W., McMinn, A., Meiners, K.M., 2013. Three improved satellite chlorophyll algorithms for the Southern Ocean. Journal of Geophysical Research: Oceans. doi: 10.1002/jgrc.20270. It is expected that the data set will be periodically updated with contemporary data as it becomes available. There are four sub-streams within this data set. A monthly and an 8-day series for MODIS/Aqua and similarly for SeaWIFS. Note that SeaWIFS ceased operation in late 2010 so there will be no further SeaWIFS data. The data represented by this record is monthly data for SeaWIFS.

  • The Aqua and Orbview satellites carry a MODIS and SeaWIFS sensors (respectively) that observes sunlight reflected from within the ocean surface layer at multiple wavelengths. These multi-spectral measurements are used to infer the concentration of chlorophyll-a (Chl-a), most typically due to phytoplankton, present in the water. There are multiple retrieval algorithms for estimating Chl-a and aggregating the data over time. This data set is a reprocessed copy of 9km monthly and 8-day versions produced globally by NASA, adjusted for the Southern Ocean south of latitude 30S. The full methodology is described in Johnson, R., Strutton, P.G., Wright, S.W., McMinn, A., Meiners, K.M., 2013. Three improved satellite chlorophyll algorithms for the Southern Ocean. Journal of Geophysical Research: Oceans. doi: 10.1002/jgrc.20270. It is expected that the data set will be periodically updated with contemporary data as it becomes available. There are four sub-streams within this data set. A monthly and an 8-day series for MODIS/Aqua and similarly for SeaWIFS. Note that SeaWIFS ceased operation in late 2010 so there will be no further SeaWIFS data. The data represented by this record is weekly data for MODIS/Aqua.

  • The Aqua and Orbview satellites carry a MODIS and SeaWIFS sensors (respectively) that observes sunlight reflected from within the ocean surface layer at multiple wavelengths. These multi-spectral measurements are used to infer the concentration of chlorophyll-a (Chl-a), most typically due to phytoplankton, present in the water. There are multiple retrieval algorithms for estimating Chl-a and aggregating the data over time. This data set is a reprocessed copy of 9km monthly and 8-day versions produced globally by NASA, adjusted for the Southern Ocean south of latitude 30S. The full methodology is described in Johnson, R., Strutton, P.G., Wright, S.W., McMinn, A., Meiners, K.M., 2013. Three improved satellite chlorophyll algorithms for the Southern Ocean. Journal of Geophysical Research: Oceans. doi: 10.1002/jgrc.20270. It is expected that the data set will be periodically updated with contemporary data as it becomes available. There are four sub-streams within this data set. A monthly and an 8-day series for MODIS/Aqua and similarly for SeaWIFS. Note that SeaWIFS ceased operation in late 2010 so there will be no further SeaWIFS data. The data represented by this record is monthly data for MODIS/Aqua.

  • The National Reef Monitoring Network brings together shallow reef surveys conducted around Australia into a centralised database. The IMOS National Reef Monitoring Network sub-Facility collates, cleans, stores and makes this data rapidly available from contributors including: Reef Life Survey, Parks Australia, Department of Biodiversity, Conservation and Attractions (Western Australia), Department of Environment, Water and Natural Resources (South Australia), Department of Primary Industries (New South Wales), Tasmanian Parks and Wildlife Service and Parks Victoria. The data provided by the National Reef Monitoring Network contributes to establishing and supporting national marine baselines, and assisting with the management of Commonwealth and State marine reserves. The Australian Temperate Reef Network (ATRC) aims to improve biodiversity conservation and the sustainable management of marine resources by coordinating surveys of rocky and coral reefs using scientific methods, with the ultimate goal to improve coastal stewardship. Our activities depend on the skills of marine scientists, experienced and motivated recreational SCUBA divers, partnerships with management agencies and university researchers, and active input from the ATRC partners. ATRC data are freely available to the public for non-profit purposes, so not only managers, but also groups such as local dive clubs or schools may use these data to look at changes over time in their own local reefs. By making data freely available and through public outputs, ATRC aims to raise broader community awareness of the status of Australia?s marine biodiversity and associated conservation issues. This dataset contains data on the cover of macroalage and sessile invertebrates collected in situ at Australian Temperate Reef Collaboration (ATRC) sites. Quadrats are placed at 10 m spacing along each transect line (i.e. 5 per 50 m transect and 20 per contiguous 200 m) by divers skilled in macroalgal identification. The canopy layer, mid-story and substrate are sequentially assessed in each single, 50 -point quadrat.