Offshore Islands (Australia) | Offshore Islands (Australia) | Macquarie Island
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
The Southern Ocean has been disproportionately affected by climate change and is therefore an ideal place to study the influence of changing environmental conditions on ecosystems. Changes in the demography of predator populations are indicators of broader shifts in food-web structure, but long-term data are required to study these effects. Southern elephant seals (Mirounga leonina) from Macquarie Island have consistently decreased in population size while all other major populations across the Southern Ocean have recently stabilised or are increasing. Two long-term mark-recapture studies (1956-1967 and 1993-2009) have monitored this population, which provides an opportunity to investigate demographic performance over a range of climatic conditions. This provides insights on individual vital rates of known-age seals from Macquarie Island over extensively long timeseries.
-
Globally, terrestrially-breeding marine predators have experienced shifts in species distribution, prey availability, breeding phenology, and population dynamics due to climate change. These central-place foragers are restricted within proximity of their breeding colonies during the breeding season, making them highly susceptible to any changes in both marine and terrestrial environments. While ecologists have developed risk assessments to assess likely climate risk in various contexts, these often overlook critical breeding biology data. To address this knowledge gap, we developed a trait-based risk assessment framework, focusing on the breeding season and applying it to marine predators breeding in parts of Australian territory and Antarctica. Our objectives were to quantify climate change risk, identify specific threats, and establish an adaptable framework. The assessment considered 25 criteria related to three risk components: vulnerability, exposure, and hazard, while accounting for uncertainty. We employed a scoring system that integrated a systematic literature review and expert elicitation for the hazard criteria. Monte Carlo sensitivity analysis was conducted to identify key factors contributing to overall risk. Our results identified shy albatross (Thalassarche cauta), southern rockhopper penguins (Eudyptes chrysocome), Australian fur seals (Arctocephalus pusillus doriferus), and Australian sea lions (Neophoca cinerea) with high climate urgency. Species breeding in lower latitudes as well as certain eared seal, albatross, and penguin species were particularly at risk. Hazard and exposure explained the most variation in relative risk, outweighing vulnerability. Key climate hazards affecting most species include extreme weather events, changes in habitat suitability, and prey availability. We emphasise the need for further research, focusing on at-risk species, and filling knowledge gaps (less-studied hazard criteria, and/or species) to provide a more accurate and robust climate change risk assessment. Our findings offer valuable insights for conservation efforts, given monitoring and implementing climate adaptation strategies for land-dependent marine predators is more feasible during their breeding season.