Keyword

EARTH SCIENCE | BIOSPHERE | ECOLOGICAL DYNAMICS | COMMUNITY DYNAMICS | INVASIVE SPECIES

3 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 3 / 3
  • Categories  

    This record contains the R code and bibliographic data used in the publication 'Reciprocal knowledge exchange between climate-driven species redistribution and invasion ecology' (doi:10.21425/F5FBG60804). The aim of this study was to examine the current degree of cross-fertilisation between range shift ecology and invasion ecology, as a first step in determining the level of need for increasing connection between the two fields. To that end, here we examine (1) the structure and degree of similarity of themes explored within range shift and invasion ecology publications, (2) the extent that range shift and invasion publications draw on a common pool of research, and (3) the extent that range shift and invasion publications directly cite publications from the other field of study. This dataset includes: 1) R code used in the litsearchr package to generate a semi-automated search string, 2) publication data used for bibliographic analysis, and 3) R code used with the bibliometrix package for keyword co-occurrence analysis.

  • Invasive mammal eradications are commonplace in island conservation. However, post-eradication monitoring beyond the confirmation of target species removal is rarer. Seabirds are ecosystem engineers on islands and are negatively affected by invasive mammals. Following an invasive mammal eradication, the recovery of seabird populations can be necessary for wider ecosystem recovery. Seabirds fertilise islands with isotopically heavy nitrogen, which means nitrogen stable isotope analysis (δ15N) could provide a useful means for assessing corresponding change in ecosystem function. We quantified decadal changes in δ15N on eight temperate New Zealand islands subject in pairs to distinct mammal invasion and seabird restoration histories: invaded, never-invaded, invader-eradicated and undergoing active seabird restoration. First, we investigated long-term changes in δ15N values on individual islands. Second, we used a space for time analysis to determine if δ15N levels on islands from which invaders had been removed eventually recovered to values typical of never-invaded islands. On each island soil, plants (Coprosma repens, C. robust and Myrsine australis) and spiders (Porrhothelidae) were sampled in 2006/07 and 2022 allowing δ15N change on individual islands over 16 years to be assessed. Combined, the samples from invader-eradicated islands provided a 7 – 32 year post-eradication dataset. Change in δ15N was only detected on one island across the study period, following the unexpected recolonisation of seabirds to an invaded island. Invader-eradicated islands generally had higher δ15N values than invaded islands however, they were still lower than never-invaded islands and there was no trend in δ15N with time since eradication. This, and the measurable increase in δ15N following seabird recolonisation on one island, may suggest that δ15N change occurs rapidly following invader-eradication, but then slows, with δ15N values staying relatively constant in the time period studied here. Isotope and seabird population studies need to be coupled to ascertain if plateauing in δ15N reflects a slowing of seabird population growth and subsequent basal nutrient input, or if the baseline nutrients are entering the ecosystem but then not propagating up the food web.

  • Categories    

    This data set consists of a scored time-series of Autonomous Underwater Vehicle (AUV) images from the Bicheno region on the east coast of Tasmania. Surveys were conducted between 2011 and 2016 within the Governor Island Marine Reserve and nearby sites outside the reserve. Governor Island was surveyed in 2011, 2013, 2014 and 2016. The outside sites of Trap Reef, Cape Lodi and Butlers Point were surveyed in 2011, 2013 and 2016. Imagery across all surveys was scored for the presence of Centrostephanus rodgersii urchin barrens across rocky reef at each site. Prior to analysis the data was subsetted to every fifth image to avoid overlapping images. The data set also contains depth information for each image and a measure of rugosity (Vector Rugosity Measure) computed in ArcGIS software from a one metre resolution bathymetric map covering the survey sites. Analysis was conducted to examine the trend in the presence of barrens through time and to compare the occurrence of barrens inside the Governor Island Marine Reserve with sites outside the reserve. A spatio-temporal model incorporating both spatial and temporal correlation in the time-series of data was used. This data set contains the scored data used in the analysis. Further details of the methods used and results are contained in the following article. Please cite any use of the data or code by citing this article: Perkins NR, Hosack GR, Foster SD, Monk J, Barrett NS (2020) Monitoring the resilience of a no-take marine reserve to a range extending species using benthic imagery. PLOS ONE 15(8): e0237257. https://doi.org/10.1371/journal.pone.0237257