EARTH SCIENCE | AGRICULTURE | ANIMAL SCIENCE | ANIMAL PHYSIOLOGY AND BIOCHEMISTRY
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
Antarctic krill (Euphausia superba) are a keystone species in the Southern Ocean, but little is known about how they will respond to climate change. Ocean acidification, caused by sequestration of carbon dioxide into ocean surface waters (pCO2), is known to alter the lipid biochemistry of some organisms. This can have cascading effects up the food chain. In a year-long laboratory experiment adult krill were exposed to ambient seawater pCO2 levels (400 μatm), elevated pCO2 levels that mimicked near-future ocean acidification (1000, 1500 and 2000 μatm) and an extreme pCO2 level (4000 μatm). The laboratory light regime mimicked the seasonal Southern Ocean photoperiod and krill received a constant food supply. Total lipid mass (mg g -1 DM) of adult krill was unaffected by near-future levels of seawater pCO2. Fatty acid composition (%) and fatty acid ratios associated with immune responses and cell membrane fluidity were also unaffected by near-future pCO2, apart from an increase in 18:3n-3/18:2n-6 ratios in krill in 1500 μatm pCO2 in winter and spring. Extreme pCO2 had no effect on krill lipid biochemistry during summer. During winter and spring, krill in extreme pCO2 had elevated levels of omega-6 fatty acids (up to 1.2% increase in 18:2n-6, up to 0.8% increase in 20:4n-6 and lower 18:3n-3/18:2n-6 and 20:5n-3/20:4n-6 ratios), and showed evidence of increased membrane fluidity (up to three-fold increase in phospholipid/sterol ratios). These results indicate that the lipid biochemistry of adult krill is robust to near-future ocean acidification.
-
Antarctic krill (Euphausia superba) have a keystone role in the Southern Ocean, as the primary prey of Antarctic predators. Any decreases in krill abundance could result in a major ecological regime shift, but there is currently limited information on how climate change may affect krill. Increasing anthropogenic carbon dioxide (CO2) emissions are causing ocean acidification, as absorption of atmospheric CO2 in seawater alters ocean chemistry. Ocean acidification increases mortality and negatively affects physiological functioning in some marine invertebrates, and is predicted to occur most rapidly at high latitudes. Here we show that, in the laboratory, adult krill are able to survive, grow, store fat, mature, and maintain respiration rates when exposed to near-future ocean acidification (1000 – 2000 μatm pCO2) for one year. Despite differences in seawater pCO2 incubation conditions, adult krill are able to actively maintain the acid-base balance of their body fluids in near-future pCO2, which enhances their resilience to ocean acidification.
-
The fatty acid content and composition of the Antarctic krill Euphausia superba Dana, 1850 were investigated using samples collected by a commercial fishing vessel. This dataset allowed comparison between seasons, years (2013–2016), and different fishing locations. Quantities of omega 3 fatty acids 20:5n-3 and 22:6n-3 (mg/g dry mass; DM) were highest in autumn and decreased through winter to reach a spring low. Quantities of the flagellate marker 18:4n-3 and diatom marker 16:1n-7c were variable and did not display the same seasonal fluctuations. In summer, krill had high percentages (% total fatty acids) of 20:5n-3 and 22:6n-3, total PUFA, and low 18:1n-9c/18:1n-7c ratios, indicating a more herbivorous diet. Krill became more omnivorous from autumn to spring, indicated by increasing ratios of 18:1n-9c/18:1n-7c and percentages of Σ 20:1 + 22:1 isomers. Bacterial fatty acids (Σ C15 + C17 + C19 isomers) were minor components year-round (0.9–1.8 %). Seasonal levels of herbivory and omnivory differed between years, and levels of specific fatty acid ratios differed between fishing locations. The fatty acid 18:4n-3 was a major driver of variability in krill fatty acid composition, with no obvious seasonal driver. This is the first study to report krill fatty acid data during all four seasons over consecutive years. This large-scale study highlights the value of using fisheries samples to examine seasonal and annual fluctuations in krill diet and condition.
-
Fatty acid analysis is a powerful tool in food web research for estimating dietary sources in marine predators. However, the utility of fatty acids as dietary indicators from whole lipid samples, rather than from separate lipid classes, has been questioned. Samples are often collected at a single time point, precluding seasonal dietary comparisons. We investigated variations in the fatty acid composition of structural (phospholipids) and storage lipids (triacylglycerols) of Antarctic krill (Euphausia superba) using fisheries samples obtained over one year. Seasonal variation was observed in fatty acid biomarkers within triacylglycerol and phospholipid fractions of krill. Fatty acids in krill triacylglycerols (thought to better represent recent diet), reflected omnivorous feeding with highest percentages of flagellate biomarkers (18:4n-3) in summer, and diatom biomarkers (16:1n-7c) in autumn, winter and spring. Carnivory biomarkers (∑ 20:1 + 22:1 and 18:1n-9c/18:1n-7c) in krill were greater in autumn. Phospholipid fatty acids were less variable and higher in 20:5n-3 and 22:6n-3, which are essential components of cell membranes. Sterol composition did not yield detailed dietary information, but percentages of the major krill sterol, cholesterol, were significantly higher in winter and spring compared with summer and autumn. Unexpectedly, 18:4n-3 and copepod markers ∑ 20:1 + 22:1 were not strongly associated with the triacylglycerol fraction during some seasons. Krill may mobilise 18:4n-3 to phospholipids for conversion to long chain polyunsaturated fatty acids, which would have implications for its role as a dietary biomarker. For the first time, we demonstrate the dynamic seasonal relationship between specific biomarkers and krill lipid classes.